Pcf theory and cardinal invariants of the reals

Lajos Soukup

Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences

Winter School in Abstract Analysis section Set Theory

周レイモレイモ

- Is every set definable?
- Is every set definable in some generic extension?
- Hamkin's question: Is every set X definable in some cardinal preserving extension of the ground model?
- What about $X \subset \omega$?
- Cardinal exponentiation can not help: it may collapse cardinals
- Use the spectrum of some cardinal invariant to code!

Is every set definable?

- Is every set definable in some generic extension?
- Hamkin's question: Is every set X definable in some cardinal preserving extension of the ground model?
- What about $X \subset \omega$?
- Cardinal exponentiation can not help: it may collapse cardinals
- Use the spectrum of some cardinal invariant to code!

- Is every set definable?
- Is every set definable in some generic extension?
- Hamkin's question: Is every set X definable in some cardinal preserving extension of the ground model?
- What about $X \subset \omega$?
- Cardinal exponentiation can not help: it may collapse cardinals
- Use the spectrum of some cardinal invariant to code!

- Is every set definable?
- Is every set definable in some generic extension?
- Hamkin's question: Is every set X definable in some cardinal preserving extension of the ground model?
- What about $X \subset \omega$?
- Cardinal exponentiation can not help: it may collapse cardinals
- Use the spectrum of some cardinal invariant to code!

周レイモレイモ

- Is every set definable?
- Is every set definable in some generic extension?
- Hamkin's question: Is every set X definable in some cardinal preserving extension of the ground model?
- What about $X \subset \omega$?
- Cardinal exponentiation can not help: it may collapse cardinals
- Use the spectrum of some cardinal invariant to code!

- Is every set definable?
- Is every set definable in some generic extension?
- Hamkin's question: Is every set X definable in some cardinal preserving extension of the ground model?
- What about $X \subset \omega$?
- Cardinal exponentiation can not help: it may collapse cardinals
- Use the spectrum of some cardinal invariant to code!

- Is every set definable?
- Is every set definable in some generic extension?
- Hamkin's question: Is every set X definable in some cardinal preserving extension of the ground model?
- What about $X \subset \omega$?
- Cardinal exponentiation can not help: it may collapse cardinals
- Use the spectrum of some cardinal invariant to code!

- $\mathfrak{a} = \min\{|\mathcal{A}| : \mathcal{A} \subset [\omega]^{\omega} \text{ is MAD}\}$
- spectrum(\mathfrak{a})= {| \mathcal{A} | : $\mathcal{A} \subset [\omega]^{\omega}$ is MAD}

Let X ⊂ ω.
 If CH holds then there is a c.c.c poset P such that

 $\mathcal{N}^{P} \models " n \in X \text{ iff } \aleph_{n+1} \in \operatorname{spectrum}(\mathfrak{a})".$

- $\mathfrak{a} = \min\{|\mathcal{A}| : \mathcal{A} \subset [\omega]^{\omega} \text{ is MAD}\}$
- spectrum(\mathfrak{a})= {| \mathcal{A} | : $\mathcal{A} \subset [\omega]^{\omega}$ is MAD}

• Let $X \subset \omega$. If CH holds then there is a c.c.c poset *P* such that

 $\mathcal{N}^{P} \models " n \in X \text{ iff } \aleph_{n+1} \in \operatorname{spectrum}(\mathfrak{a})".$

- $\mathfrak{a} = \min\{|\mathcal{A}| : \mathcal{A} \subset [\omega]^{\omega} \text{ is MAD}\}$
- spectrum(\mathfrak{a})= {| \mathcal{A} | : $\mathcal{A} \subset [\omega]^{\omega}$ is MAD}

• Let $X \subset \omega$. If CH holds then there is a c.c.c poset *P* such that

 $\mathcal{N}^{P}\models$ " $n\in X$ iff $\aleph_{n+1}\in$ spectrum(a)".

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- $\mathfrak{a} = \min\{|\mathcal{A}| : \mathcal{A} \subset [\omega]^{\omega} \text{ is MAD}\}$
- spectrum(\mathfrak{a})= {| \mathcal{A} | : $\mathcal{A} \subset [\omega]^{\omega}$ is MAD}
- Let X ⊂ ω.
 If CH holds then there is a c.c.c poset P such th

4 **A** N A **B** N A **B**

- $\mathfrak{a} = \min\{|\mathcal{A}| : \mathcal{A} \subset [\omega]^{\omega} \text{ is MAD}\}$
- spectrum(\mathfrak{a})= {| \mathcal{A} | : $\mathcal{A} \subset [\omega]^{\omega}$ is MAD}
- Let X ⊂ ω.
 If CH holds then there is a c.c.c poset P such that

$$V^{P}\models$$
 " $n\in X$ iff $leph_{n+1}\in {
m spectrum}(\mathfrak{a})$ ".

・ 同 ト ・ ヨ ト ・ ヨ

If CH holds then for each $X \subset \omega$ there is a c.c.c poset *P* such that

 $V^{P} \models$ " $n \in X$ iff $\aleph_{n+1} \in \operatorname{spectrum}(\mathfrak{a})$ ".

- Question: Let $X \subset \omega + \omega$. Is there a c.c.c poset *P* such that $V^P \models "n \in X$ iff $\aleph_{n+1} \in \text{spectrum}(\mathfrak{a})$,
- No problem with $\{\aleph_1, \aleph_2, \dots\}$ and $\{\aleph_{\omega+2}, \aleph_{\omega+3}, \dots\}$
- find a c.c.c poset *P* s.t.

 $V^{P} \models \{ \aleph_{n} : 1 \leq n < \omega \} \subset \operatorname{spectrum}(\mathfrak{a}) \land \aleph_{\omega+1} \notin \operatorname{spectrum}(\mathfrak{a})$

If CH holds then for each $X \subset \omega$ there is a c.c.c poset P such that

 $V^{\mathcal{P}} \models$ " $n \in X$ iff $\aleph_{n+1} \in \operatorname{spectrum}(\mathfrak{a})$ ".

- Question: Let $X \subset \omega + \omega$. Is there a c.c.c poset *P* such that $V^P \models "n \in X$ iff $\aleph_{n+1} \in \text{spectrum}(\mathfrak{a})$,
- No problem with $\{\aleph_1, \aleph_2, \dots\}$ and $\{\aleph_{\omega+2}, \aleph_{\omega+3}, \dots\}$
- find a c.c.c poset *P* s.t.

 $V^{P} \models \{ \aleph_{n} : 1 \leq n < \omega \} \subset \operatorname{spectrum}(\mathfrak{a}) \land \aleph_{\omega+1} \notin \operatorname{spectrum}(\mathfrak{a})$

If CH holds then for each $X \subset \omega$ there is a c.c.c poset *P* such that

 $V^{\mathcal{P}} \models$ " $n \in X$ iff $\aleph_{n+1} \in \operatorname{spectrum}(\mathfrak{a})$ ".

- Question: Let $X \subset \omega + \omega$. Is there a c.c.c poset *P* such that $V^P \models "n \in X$ iff $\aleph_{n+1} \in \operatorname{spectrum}(\mathfrak{a})$,
- No problem with $\{\aleph_1, \aleph_2, \dots\}$ and $\{\aleph_{\omega+2}, \aleph_{\omega+3}, \dots\}$
- find a c.c.c poset *P* s.t. $V^P \models \{\aleph_n : 1 \le n < \omega\} \subset \operatorname{spectrum}(\mathfrak{a}) \land \aleph_{\omega+1} \notin \operatorname{spectrum}(\mathfrak{a})$

If CH holds then for each $X \subset \omega$ there is a c.c.c poset *P* such that

 $V^{P} \models$ " $n \in X$ iff $\aleph_{n+1} \in$ spectrum(\mathfrak{a})".

- Question: Let $X \subset \omega + \omega$. Is there a c.c.c poset *P* such that $V^P \models "n \in X$ iff $\aleph_{n+1} \in \text{spectrum}(\mathfrak{a})$,
- No problem with $\{\aleph_1, \aleph_2, \dots\}$ and $\{\aleph_{\omega+2}, \aleph_{\omega+3}, \dots\}$
- find a c.c.c poset *P* s.t.

 $V^{\mathcal{P}} \models \{ \aleph_n : 1 \le n < \omega \} \subset \operatorname{spectrum}(\mathfrak{a}) \land \ \aleph_{\omega+1} \notin \operatorname{spectrum}(\mathfrak{a})$

Characterize spectrum (\mathfrak{x}) for different cardinal invariants!

- \mathfrak{x} cardinal invariant (e.g. $\mathfrak{a}, \mathfrak{b}$)
- $\mathfrak{x} = \min\{|X| : X \in \mathfrak{X}_{\mathfrak{x}}\}$ or $\mathfrak{x} = \sup\{|X| : X \in \mathfrak{X}_{\mathfrak{x}}\}$
- spectrum $(\mathfrak{x}) = \{ |X| : X \in \mathfrak{X}_{\mathfrak{x}} \}$

A (10) A (10) A (10)

Characterize spectrum (x) for different cardinal invariants!

- \mathfrak{x} cardinal invariant (e.g. $\mathfrak{a}, \mathfrak{b}$)
- $\mathfrak{x} = \min\{|X| : X \in \mathfrak{X}_{\mathfrak{x}}\}$ or $\mathfrak{x} = \sup\{|X| : X \in \mathfrak{X}_{\mathfrak{x}}\}$
- spectrum $(\mathfrak{x}) = \{ |X| : X \in \mathfrak{X}_{\mathfrak{x}} \}$

< 同 ト < 三 ト < 三

Characterize spectrum (x) for different cardinal invariants!

- g cardinal invariant (e.g. a, b)
- $\mathfrak{x} = \min\{|X| : X \in \mathfrak{X}_{\mathfrak{x}}\}$ or $\mathfrak{x} = \sup\{|X| : X \in \mathfrak{X}_{\mathfrak{x}}\}$
- spectrum $(\mathfrak{x}) = \{ |X| : X \in \mathfrak{X}_{\mathfrak{x}} \}$

A (10) > A (10) > A (10)

Characterize spectrum (x) for different cardinal invariants!

- g cardinal invariant (e.g. a, b)
- $\mathfrak{x} = \min\{|X| : X \in \mathfrak{X}_{\mathfrak{x}}\}$ or $\mathfrak{x} = \sup\{|X| : X \in \mathfrak{X}_{\mathfrak{x}}\}$
- spectrum $(\mathfrak{x}) = \{ |X| : X \in \mathfrak{X}_{\mathfrak{x}} \}$

・ 同 ト ・ ヨ ト ・ ヨ

Characterize spectrum (x) for different cardinal invariants!

- r cardinal invariant (e.g. a, b)
- $\mathfrak{x} = \min\{|X| : X \in \mathfrak{X}_{\mathfrak{x}}\}$ or $\mathfrak{x} = \sup\{|X| : X \in \mathfrak{X}_{\mathfrak{x}}\}$
- spectrum $(\mathfrak{x}) = \{ |X| : X \in \mathfrak{X}_{\mathfrak{x}} \}$

イロト イモト イモ

- $S(\omega)$ the group of all permutations of the natural numbers
- Define the **cofinality spectrum** of $S(\omega)$ as follows:
- λ ∈ CF(S(ω)) iff S(ω) is the union of an increasing chain of λ proper subgroups.
- Shelah and Thomas: (1) if {κ_n : n < ω} ∈ [CF(S(ω))]^ω increasing then pcf({κ_n : n < ω}) ⊂ CF(S(ω))
 (2) IF GCH holds and K ⊂ Reg s.t (i), (ii) and (iii) hold, THEN CF(S(ω)) = K in some c.c.c generic extension
- Problem: Full characterization of CF(S(ω))

4 **A b b b b b b**

• $S(\omega)$ the group of all permutations of the natural numbers

- Define the **cofinality spectrum** of $S(\omega)$ as follows:
- λ ∈ CF(S(ω)) iff S(ω) is the union of an increasing chain of λ proper subgroups.
- Shelah and Thomas: (1) if {κ_n : n < ω} ∈ [CF(S(ω))]^ω increasing then pcf({κ_n : n < ω}) ⊂ CF(S(ω))
 (2) IF GCH holds and K ⊂ Reg s.t (i), (ii) and (iii) hold, THEN CF(S(ω)) = K in some c.c.c generic extension
- Problem: Full characterization of CF(S(ω))

4 **A b b b b b b**

- $S(\omega)$ the group of all permutations of the natural numbers
- Define the **cofinality spectrum** of $S(\omega)$ as follows:
- λ ∈ CF(S(ω)) iff S(ω) is the union of an increasing chain of λ proper subgroups.
- Shelah and Thomas: (1) if {κ_n : n < ω} ∈ [CF(S(ω))]^ω increasing then pcf({κ_n : n < ω}) ⊂ CF(S(ω))
 (2) IF GCH holds and K ⊂ Reg s.t (i), (ii) and (iii) hold, THEN CF(S(ω)) = K in some c.c.c generic extension
- Problem: Full characterization of CF(S(ω))

不同 とうきょうき

- $S(\omega)$ the group of all permutations of the natural numbers
- Define the **cofinality spectrum** of $S(\omega)$ as follows:
- λ ∈ CF(S(ω)) iff S(ω) is the union of an increasing chain of λ proper subgroups.
- Shelah and Thomas: (1) if {κ_n : n < ω} ∈ [CF(S(ω))]^ω increasing then *pcf*({κ_n : n < ω}) ⊂ CF(S(ω))
 (2) IF GCH holds and K ⊂ Reg s.t (i), (ii) and (iii) hold, THEN CF(S(ω)) = K in some c.c.c generic extension
- Problem: Full characterization of CF(S(ω))

4 **A A A A A A A**

- $S(\omega)$ the group of all permutations of the natural numbers
- Define the **cofinality spectrum** of $S(\omega)$ as follows:
- λ ∈ CF(S(ω)) iff S(ω) is the union of an increasing chain of λ proper subgroups.
- Shelah and Thomas: (1) if {κ_n : n < ω} ∈ [CF(S(ω))]^ω increasing then pcf({κ_n : n < ω}) ⊂ CF(S(ω))
 (2) IF GCH holds and K ⊂ Reg s.t (i), (ii) and (iii) hold, THEN CF(S(ω)) = K in some c.c.c generic extension
- Problem: Full characterization of CF(S(ω))

- $S(\omega)$ the group of all permutations of the natural numbers
- Define the **cofinality spectrum** of $S(\omega)$ as follows:
- λ ∈ CF(S(ω)) iff S(ω) is the union of an increasing chain of λ proper subgroups.
- Shelah and Thomas: (1) if {κ_n : n < ω} ∈ [CF(S(ω))]^ω increasing then pcf({κ_n : n < ω}) ⊂ CF(S(ω))
 (2) IF GCH holds and K ⊂ Reg s.t (i), (ii) and (iii) hold, THEN CF(S(ω)) = K in some c.c.c generic extension
- Problem: Full characterization of CF(S(ω))

- $S(\omega)$ the group of all permutations of the natural numbers
- Define the **cofinality spectrum** of $S(\omega)$ as follows:
- λ ∈ CF(S(ω)) iff S(ω) is the union of an increasing chain of λ proper subgroups.
- Shelah and Thomas: (1) if {κ_n : n < ω} ∈ [CF(S(ω))]^ω increasing then pcf({κ_n : n < ω}) ⊂ CF(S(ω))
 (2) IF GCH holds and K ⊂ Reg s.t (i), (ii) and (iii) hold, THEN CF(S(ω)) = K in some c.c.c generic extension

• **Problem**: Full characterization of $CF(S(\omega))$

- $S(\omega)$ the group of all permutations of the natural numbers
- Define the **cofinality spectrum** of $S(\omega)$ as follows:
- λ ∈ CF(S(ω)) iff S(ω) is the union of an increasing chain of λ proper subgroups.
- Shelah and Thomas: (1) if {κ_n : n < ω} ∈ [CF(S(ω))]^ω increasing then pcf({κ_n : n < ω}) ⊂ CF(S(ω))
 (2) IF GCH holds and K ⊂ Reg s.t (i), (ii) and (iii) hold, THEN CF(S(ω)) = K in some c.c.c generic extension
- Problem: Full characterization of CF(S(ω))

Shelah-Thomas: $CF(S(\omega))$ is pcf-closed.

- What about the spectrum of b?
- What is the spectrum of b?
- \mathfrak{b} is the minimal size of an unbounded chain in $\langle \omega^{\omega},\leq^*
 angle$
- chain spectrum(b)=

Shelah-Thomas: $CF(S(\omega))$ is pcf-closed.

What about the spectrum of b?

- What is the spectrum of b?
- \mathfrak{b} is the minimal size of an unbounded chain in $\langle \omega^{\omega},\leq^*
 angle$
- chain spectrum(b)=

Shelah-Thomas: $CF(S(\omega))$ is pcf-closed.

- What about the spectrum of b?
- What is the spectrum of b?
- \mathfrak{b} is the minimal size of an unbounded chain in $\langle \omega^{\omega},\leq^*
 angle$
- chain spectrum(b)=

Shelah-Thomas: $CF(S(\omega))$ is pcf-closed.

- What about the spectrum of b?
- What is the spectrum of b?
- \mathfrak{b} is the minimal size of an unbounded chain in $\langle \omega^{\omega}, \leq^*
 angle$
- chain spectrum(b)= $\{\kappa \in \Re \mathfrak{eg} : \exists unbounded \kappa \text{-chain in } \langle \omega^{\omega}, \leq \rangle$

Shelah-Thomas: $CF(S(\omega))$ is pcf-closed.

- What about the spectrum of b?
- What is the spectrum of b?
- \mathfrak{b} is the minimal size of an unbounded chain in $\langle \omega^{\omega}, \leq^*
 angle$
- chain spectrum(b)=

The spectrum of b

chain – *spectrum*(\mathfrak{b})= { $\kappa \in \mathfrak{Reg} : \exists$ unbounded κ -chain in $\langle \omega^{\omega}, \leq^* \rangle$ }

Theorem (Farah)

Assume GCH. Given any set K of uncountable regular cardinals there is a c.c.c poset \mathcal{H}_K s. t. $V^{\mathcal{H}_K} \models chain - spectrum(\mathfrak{b}) = K \cup \{\aleph_1\}.$

< □ > < 同 > < 回 > < 回 > < 回

The spectrum of b

chain – *spectrum*(\mathfrak{b})= { $\kappa \in \mathfrak{Reg} : \exists$ unbounded κ -chain in $\langle \omega^{\omega}, \leq^* \rangle$ }

Theorem (Farah)

Assume GCH. Given any set *K* of uncountable regular cardinals there is a c.c.c poset \mathcal{H}_K s. t. $V^{\mathcal{H}_K} \models chain - spectrum(\mathfrak{b}) = K \cup \{\aleph_1\}.$

不同 いんきいんき

- $\mathcal{B} = \{ \mathcal{B} \subset \omega^{\omega} : \mathcal{B} \text{ is } \leq^* \text{-bounded in } \langle \omega^{\omega}, \leq^* \rangle \}$
- $\Phi(b) = \{x \in \omega^{\omega} : x \leq^* b\}$
- • embeds $\langle \omega^{\omega}, \leq^* \rangle$ into $\langle \mathcal{B}, \subset \rangle$
- \mathcal{B} the σ -ideal generated by the compact subsets of the irrationals.
- $\mathfrak{b} = add(\mathcal{B})$
- If *I* is an ideal, let ADD(*I*) be the additivity spectrum of *I*:
 κ ∈ ADD(*I*) iff
 there is an increasing chain {C_α : α < κ} ⊂ *I* with ∪_{α<κ}C_α ∉
- ADD(\mathcal{B}) \supseteq chain spectrum(\mathfrak{b}).

- $\mathcal{B} = \{ \mathcal{B} \subset \omega^{\omega} : \mathcal{B} \text{ is } \leq^* \text{-bounded in } \langle \omega^{\omega}, \leq^* \rangle \}$
- $\Phi(b) = \{x \in \omega^{\omega} : x \leq^* b\}$
- Φ embeds $\langle \omega^{\omega}, \leq^* \rangle$ into $\langle \mathcal{B}, \subset \rangle$
- \mathcal{B} the σ -ideal generated by the compact subsets of the irrationals.
- $\mathfrak{b} = add(\mathcal{B})$
- If *I* is an ideal, let ADD(*I*) be the additivity spectrum of *I*:
 κ ∈ ADD(*I*) iff
 there is an increasing chain {C_α : α < κ} ⊂ *I* with U_{α<κ}C_α ∉
- ADD(\mathcal{B}) \supseteq chain spectrum(\mathfrak{b}).

chain – spectrum(b) can be "arbitrary"

• $\mathcal{B} = \{ \mathcal{B} \subset \omega^{\omega} : \mathcal{B} \text{ is } \leq^* \text{-bounded in } \langle \omega^{\omega}, \leq^* \rangle \}$

•
$$\Phi(b) = \{ \mathbf{x} \in \omega^{\omega} : \mathbf{x} \leq^* b \}$$

- Φ embeds $\langle \omega^{\omega}, \leq^* \rangle$ into $\langle \mathcal{B}, \subset \rangle$
- \mathcal{B} the σ -ideal generated by the compact subsets of the irrationals.
- $\mathfrak{b} = add(\mathcal{B})$
- If *I* is an ideal, let ADD(*I*) be the additivity spectrum of *I*:
 κ ∈ ADD(*I*) iff
 there is an increasing chain {C_α : α < κ} ⊂ *I* with U_{α<κ}C_α ∉
- ADD(\mathcal{B}) \supseteq chain spectrum(\mathfrak{b}).

- $\mathcal{B} = \{ \mathcal{B} \subset \omega^{\omega} : \mathcal{B} \text{ is } \leq^* \text{-bounded in } \langle \omega^{\omega}, \leq^* \rangle \}$
- $\Phi(b) = \{x \in \omega^{\omega} : x \leq^* b\}$
- • embeds $\langle \omega^{\omega}, \leq^* \rangle$ into $\langle \mathcal{B}, \subset \rangle$
- \mathcal{B} the σ -ideal generated by the compact subsets of the irrationals.
- $\mathfrak{b} = add(\mathcal{B})$
- If *I* is an ideal, let ADD(*I*) be the additivity spectrum of *I*:
 κ ∈ ADD(*I*) iff
 there is an increasing chain {C_α : α < κ} ⊂ *I* with U_{α<κ}C_α ∉
- ADD(\mathcal{B}) \supseteq chain spectrum(\mathfrak{b}).

- $\mathcal{B} = \{ \mathcal{B} \subset \omega^{\omega} : \mathcal{B} \text{ is } \leq^* \text{-bounded in } \langle \omega^{\omega}, \leq^* \rangle \}$
- $\Phi(b) = \{x \in \omega^{\omega} : x \leq^* b\}$
- • embeds $\langle \omega^{\omega}, \leq^* \rangle$ into $\langle \mathcal{B}, \subset \rangle$
- \mathcal{B} the σ -ideal generated by the compact subsets of the irrationals.
- $\mathfrak{b} = add(\mathcal{B})$
- If *I* is an ideal, let ADD(*I*) be the additivity spectrum of *I*:
 κ ∈ ADD(*I*) iff
 there is an increasing chain {C_k: α < κ} ⊂ *I*, with U_k < C_k ∉
- ADD(\mathcal{B}) \supseteq chain spectrum(\mathfrak{b}).

- $\mathcal{B} = \{ \mathcal{B} \subset \omega^{\omega} : \mathcal{B} \text{ is } \leq^* \text{-bounded in } \langle \omega^{\omega}, \leq^* \rangle \}$
- $\Phi(b) = \{x \in \omega^{\omega} : x \leq^* b\}$
- • embeds $\langle \omega^{\omega}, \leq^* \rangle$ into $\langle \mathcal{B}, \subset \rangle$
- \mathcal{B} the σ -ideal generated by the compact subsets of the irrationals.
- $\mathfrak{b} = add(\mathcal{B})$
- If *I* is an ideal, let ADD(*I*) be the additivity spectrum of *I*:
 κ ∈ ADD(*I*) iff
- ADD(\mathcal{B}) \supset chain spectrum(\mathfrak{b}).

chain – *spectrum*(b) can be "arbitrary"

- $\mathcal{B} = \{ \mathcal{B} \subset \omega^{\omega} : \mathcal{B} \text{ is } \leq^* \text{-bounded in } \langle \omega^{\omega}, \leq^* \rangle \}$
- $\Phi(b) = \{x \in \omega^{\omega} : x \leq^* b\}$
- • embeds $\langle \omega^{\omega}, \leq^* \rangle$ into $\langle \mathcal{B}, \subset \rangle$
- \mathcal{B} the σ -ideal generated by the compact subsets of the irrationals.
- $\mathfrak{b} = add(\mathcal{B})$
- If *I* is an ideal, let ADD(*I*) be the additivity spectrum of *I*:
 κ ∈ ADD(*I*) iff
 there is an increasing chain {C_α : α < κ} ⊂ *I* with ∪α≤κ C_α ∉
- ADD(\mathcal{B}) \supseteq chain spectrum(\mathfrak{b}).

chain – *spectrum*(b) can be "arbitrary"

- $\mathcal{B} = \{ \mathcal{B} \subset \omega^{\omega} : \mathcal{B} \text{ is } \leq^* \text{-bounded in } \langle \omega^{\omega}, \leq^* \rangle \}$
- $\Phi(b) = \{x \in \omega^{\omega} : x \leq^* b\}$
- • embeds $\langle \omega^{\omega}, \leq^* \rangle$ into $\langle \mathcal{B}, \subset \rangle$
- \mathcal{B} the σ -ideal generated by the compact subsets of the irrationals.
- $\mathfrak{b} = add(\mathcal{B})$
- If *I* is an ideal, let ADD(*I*) be the additivity spectrum of *I*:
 κ ∈ ADD(*I*) iff
 there is an increasing chain {C_α : α < κ} ⊂ *I* with ∪_{α<κ}C_α ∉ *I*.

• ADD(\mathcal{B}) \supset chain – spectrum(\mathfrak{b}).

(日)

chain – spectrum(b) can be "arbitrary"

- $\mathcal{B} = \{ \mathcal{B} \subset \omega^{\omega} : \mathcal{B} \text{ is } \leq^* \text{-bounded in } \langle \omega^{\omega}, \leq^* \rangle \}$
- $\Phi(b) = \{x \in \omega^{\omega} : x \leq^* b\}$
- • embeds $\langle \omega^{\omega}, \leq^* \rangle$ into $\langle \mathcal{B}, \subset \rangle$
- \mathcal{B} the σ -ideal generated by the compact subsets of the irrationals.
- $\mathfrak{b} = add(\mathcal{B})$
- If \mathcal{I} is an ideal, let ADD(\mathcal{I}) be the additivity spectrum of \mathcal{I} : $\kappa \in ADD(\mathcal{I})$ iff

there is an increasing chain $\{C_{\alpha} : \alpha < \kappa\} \subset \mathcal{I}$ with $\bigcup_{\alpha < \kappa} C_{\alpha} \notin \mathcal{I}$.

• ADD(\mathcal{B}) \supseteq chain – spectrum(\mathfrak{b}).

A (10) A (10) A (10) A

 $\mathsf{ADD}(\mathcal{I}) = \{ \kappa \in \mathfrak{Reg} : \exists \{ \mathbf{C}_{\alpha} : \alpha < \kappa \} \nearrow \mathcal{I} \text{ with } \cup_{\alpha < \kappa} \mathbf{C}_{\alpha} \notin \mathcal{I}.$

• For
$$C \in \mathcal{I}^+$$
, let
 $ADD(\mathcal{I}, C) = \{\kappa \in \mathfrak{Reg} :$
 \exists increasing $\{C_\alpha : \alpha < \kappa\} \subset \mathcal{I}$ s.t. $\cup_{\alpha < \kappa} C_\alpha = C\}$
• $ADD(\mathcal{I}) = \cup \{ADD(\mathcal{I}, C) : C \in \mathcal{I}^+\}.$

Theorem

Assume that $\mathcal{I} \subset \mathcal{P}(I)$ is a σ -complete ideal, $C \in \mathcal{I}^+$, and $A \subset ADD(\mathcal{I}, C)$ is countable. Then $pcf(A) \subset ADD(\mathcal{I}, C)$.

 $\mathsf{ADD}(\mathcal{I}) = \{ \kappa \in \mathfrak{Reg} : \exists \{ \mathbf{C}_{\alpha} : \alpha < \kappa \} \nearrow \mathcal{I} \text{ with } \cup_{\alpha < \kappa} \mathbf{C}_{\alpha} \notin \mathcal{I}.$

• For $C \in \mathcal{I}^+$, let $ADD(\mathcal{I}, C) = \{\kappa \in \mathfrak{Reg} :$ \exists increasing $\{C_{\alpha} : \alpha < \kappa\} \subset \mathcal{I}$ s.t. $\cup_{\alpha < \kappa} C_{\alpha} = C\}$ • $ADD(\mathcal{I}) = \cup \{ADD(\mathcal{I}, C) : C \in \mathcal{I}^+\}.$

Theorem

Assume that $\mathcal{I} \subset \mathcal{P}(I)$ is a σ -complete ideal, $C \in \mathcal{I}^+$, and $A \subset ADD(\mathcal{I}, C)$ is countable. Then $pcf(A) \subset ADD(\mathcal{I}, C)$.

(日)

 $\mathsf{ADD}(\mathcal{I}) = \{ \kappa \in \mathfrak{Reg} : \exists \{ \mathbf{C}_{\alpha} : \alpha < \kappa \} \nearrow \mathcal{I} \text{ with } \cup_{\alpha < \kappa} \mathbf{C}_{\alpha} \notin \mathcal{I}.$

• For $C \in \mathcal{I}^+$, let $ADD(\mathcal{I}, C) = \{\kappa \in \mathfrak{Reg} :$ \exists increasing $\{C_\alpha : \alpha < \kappa\} \subset \mathcal{I}$ s.t. $\cup_{\alpha < \kappa} C_\alpha = C\}$ • $ADD(\mathcal{I}) = \cup \{ADD(\mathcal{I}, C) : C \in \mathcal{I}^+\}.$

Theorem

Assume that $\mathcal{I} \subset \mathcal{P}(I)$ is a σ -complete ideal, $C \in \mathcal{I}^+$, and $A \subset ADD(\mathcal{I}, C)$ is countable. Then $pcf(A) \subset ADD(\mathcal{I}, C)$.

 $\mathsf{ADD}(\mathcal{I}) = \{ \kappa \in \mathfrak{Reg} : \exists \{ \mathbf{C}_{\alpha} : \alpha < \kappa \} \nearrow \mathcal{I} \text{ with } \cup_{\alpha < \kappa} \mathbf{C}_{\alpha} \notin \mathcal{I}.$

• For $C \in \mathcal{I}^+$, let $ADD(\mathcal{I}, C) = \{ \kappa \in \mathfrak{Reg} :$ \exists increasing $\{C_\alpha : \alpha < \kappa\} \subset \mathcal{I}$ s.t. $\cup_{\alpha < \kappa} C_\alpha = C \}$ • $ADD(\mathcal{I}) = \cup \{ADD(\mathcal{I}, C) : C \in \mathcal{I}^+ \}.$

Theorem

Assume that $\mathcal{I} \subset \mathcal{P}(I)$ is a σ -complete ideal, $C \in \mathcal{I}^+$, and $A \subset ADD(\mathcal{I}, C)$ is countable. Then $pcf(A) \subset ADD(\mathcal{I}, C)$.

- For $a \in A$ let $\{C_{\alpha}^{a} : \alpha < a\} \subset \mathcal{I}$, increasing, $\bigcup \{C_{\alpha}^{a} : \alpha < a\} = C$.
- Let $\kappa \in pcf(A)$. Fix an ultrafilter \mathcal{U} on A such that $cf(\prod A/\mathcal{U}) = \kappa$
- Let $\{g_{\alpha} : \alpha < \kappa\} \subset \prod A$ be $\leq_{\mathcal{U}}$ -increasing, $\leq_{\mathcal{U}}$ -cofinal sequence.
- For $g \in \prod A$ let $U(g) = \{x \in I : \{a \in A : x \in C^a_{g(a)}\} \in U\}$.
- $\langle U(g_{\alpha}) : \alpha < \kappa \rangle$ witnesses that $\kappa \in \mathsf{ADD}(\mathcal{I}, C)$

 $pcf(A) \subset ADD(\mathcal{I})$ for a (countable) $A \subset ADD(\mathcal{I})$?

< 同 ト < 三 ト < 三

• For $a \in A$ let $\{C_{\alpha}^{a} : \alpha < a\} \subset \mathcal{I}$, increasing, $\bigcup \{C_{\alpha}^{a} : \alpha < a\} = C$.

- Let $\kappa \in pcf(A)$. Fix an ultrafilter \mathcal{U} on A such that $cf(\prod A/\mathcal{U}) = \kappa$
- Let $\{g_{\alpha} : \alpha < \kappa\} \subset \prod A$ be $\leq_{\mathcal{U}}$ -increasing, $\leq_{\mathcal{U}}$ -cofinal sequence.
- For $g \in \prod A$ let $U(g) = \{x \in I : \{a \in A : x \in C^a_{g(a)}\} \in U\}$.
- $\langle U(g_{\alpha}) : \alpha < \kappa \rangle$ witnesses that $\kappa \in \mathsf{ADD}(\mathcal{I}, C)$

 $pcf(A) \subset ADD(\mathcal{I})$ for a (countable) $A \subset ADD(\mathcal{I})$?

< 回 > < 回 > < 回

- For $a \in A$ let $\{C_{\alpha}^{a} : \alpha < a\} \subset \mathcal{I}$, increasing, $\bigcup \{C_{\alpha}^{a} : \alpha < a\} = C$.
- Let $\kappa \in pcf(A)$. Fix an ultrafilter \mathcal{U} on A such that $cf(\prod A/\mathcal{U}) = \kappa$
- Let $\{g_{\alpha} : \alpha < \kappa\} \subset \prod A$ be $\leq_{\mathcal{U}}$ -increasing, $\leq_{\mathcal{U}}$ -cofinal sequence.
- For $g \in \prod A$ let $U(g) = \{x \in I : \{a \in A : x \in C^a_{g(a)}\} \in U\}$.
- $\langle U(g_{\alpha}) : \alpha < \kappa \rangle$ witnesses that $\kappa \in \mathsf{ADD}(\mathcal{I}, C)$

 $pcf(A) \subset ADD(\mathcal{I})$ for a (countable) $A \subset ADD(\mathcal{I})$?

< 回 > < 回 > < 回 >

- For $a \in A$ let $\{C_{\alpha}^{a} : \alpha < a\} \subset \mathcal{I}$, increasing, $\bigcup \{C_{\alpha}^{a} : \alpha < a\} = C$.
- Let $\kappa \in pcf(A)$. Fix an ultrafilter \mathcal{U} on A such that $cf(\prod A/\mathcal{U}) = \kappa$
- Let $\{g_{\alpha} : \alpha < \kappa\} \subset \prod A$ be $\leq_{\mathcal{U}}$ -increasing, $\leq_{\mathcal{U}}$ -cofinal sequence.
- For $g \in \prod A$ let $U(g) = \{x \in I : \{a \in A : x \in C^a_{\alpha(a)}\} \in U\}$.
- $\langle U(g_{\alpha}) : \alpha < \kappa \rangle$ witnesses that $\kappa \in \mathsf{ADD}(\mathcal{I}, C)$

 $pcf(A) \subset ADD(\mathcal{I})$ for a (countable) $A \subset ADD(\mathcal{I})$?

- For $a \in A$ let $\{C_{\alpha}^{a} : \alpha < a\} \subset \mathcal{I}$, increasing, $\bigcup \{C_{\alpha}^{a} : \alpha < a\} = C$.
- Let $\kappa \in pcf(A)$. Fix an ultrafilter \mathcal{U} on A such that $cf(\prod A/\mathcal{U}) = \kappa$
- Let $\{g_{\alpha} : \alpha < \kappa\} \subset \prod A$ be $\leq_{\mathcal{U}}$ -increasing, $\leq_{\mathcal{U}}$ -cofinal sequence.
- For $g \in \prod A$ let $U(g) = \{x \in I : \{a \in A : x \in C^a_{g(a)}\} \in U\}$.
- $\langle U(g_{\alpha}) : \alpha < \kappa \rangle$ witnesses that $\kappa \in \mathsf{ADD}(\mathcal{I}, C)$

 $pcf(A) \subset ADD(\mathcal{I})$ for a (countable) $A \subset ADD(\mathcal{I})$?

< 回 > < 回 > < 回 >

- For $a \in A$ let $\{C_{\alpha}^{a} : \alpha < a\} \subset \mathcal{I}$, increasing, $\bigcup \{C_{\alpha}^{a} : \alpha < a\} = C$.
- Let $\kappa \in pcf(A)$. Fix an ultrafilter \mathcal{U} on A such that $cf(\prod A/\mathcal{U}) = \kappa$
- Let $\{g_{\alpha} : \alpha < \kappa\} \subset \prod A$ be $\leq_{\mathcal{U}}$ -increasing, $\leq_{\mathcal{U}}$ -cofinal sequence.
- For $g \in \prod A$ let $U(g) = \{x \in I : \{a \in A : x \in C^a_{g(a)}\} \in U\}$.
- $\langle U(g_{\alpha}) : \alpha < \kappa \rangle$ witnesses that $\kappa \in ADD(\mathcal{I}, C)$

 $\mathit{pcf}(A) \subset \mathsf{ADD}(\mathcal{I})$ for a (countable) $A \subset \mathsf{ADD}(\mathcal{I})$?

くほう くほう くほう

- For $a \in A$ let $\{C_{\alpha}^{a} : \alpha < a\} \subset \mathcal{I}$, increasing, $\bigcup \{C_{\alpha}^{a} : \alpha < a\} = C$.
- Let $\kappa \in pcf(A)$. Fix an ultrafilter \mathcal{U} on A such that $cf(\prod A/\mathcal{U}) = \kappa$
- Let $\{g_{\alpha} : \alpha < \kappa\} \subset \prod A$ be $\leq_{\mathcal{U}}$ -increasing, $\leq_{\mathcal{U}}$ -cofinal sequence.
- For $g \in \prod A$ let $U(g) = \{x \in I : \{a \in A : x \in C^a_{g(a)}\} \in U\}$.
- $\langle U(g_{\alpha}) : \alpha < \kappa \rangle$ witnesses that $\kappa \in ADD(\mathcal{I}, C)$

 $pcf(A) \subset ADD(\mathcal{I})$ for a (countable) $A \subset ADD(\mathcal{I})$?

くほう くほう くほう

Assume that $\mathcal{I} \subset \mathcal{P}(I)$ is a σ -complete ideal, $C \in \mathcal{I}^+$, and $A \subset ADD(\mathcal{I}, C)$ is countable. Then $pcf(A) \subset ADD(\mathcal{I}, C)$.

Theorem If $A \subset ADD(\mathcal{N})$ is countable, then $pcf(A) \subset ADD(\mathcal{N})$.

• If $A \in [ADD(\mathcal{N})]^{\omega}$ then there is $C \in \mathcal{N}^+$ such that $A \subset ADD(\mathcal{N}, C)$.

What about \mathcal{M} ?

< 同 ト < 三 ト < 三

Assume that $\mathcal{I} \subset \mathcal{P}(I)$ is a σ -complete ideal, $C \in \mathcal{I}^+$, and $A \subset ADD(\mathcal{I}, C)$ is countable. Then $pcf(A) \subset ADD(\mathcal{I}, C)$.

Theorem If $A \subset ADD(\mathcal{N})$ is countable, then $pcf(A) \subset ADD(\mathcal{N})$.

• If $A \in [ADD(\mathcal{N})]^{\omega}$ then there is $C \in \mathcal{N}^+$ such that $A \subset ADD(\mathcal{N}, C)$.

What about \mathcal{M} ?

< 同 > < 三 > < 三 >

Assume that $\mathcal{I} \subset \mathcal{P}(I)$ is a σ -complete ideal, $C \in \mathcal{I}^+$, and $A \subset ADD(\mathcal{I}, C)$ is countable. Then $pcf(A) \subset ADD(\mathcal{I}, C)$.

Theorem If $A \subset ADD(\mathcal{N})$ is countable, then $pcf(A) \subset ADD(\mathcal{N})$.

• If $A \in [ADD(\mathcal{N})]^{\omega}$ then there is $C \in \mathcal{N}^+$ such that $A \subset ADD(\mathcal{N}, C)$.

What about \mathcal{M} ?

< 同 > < 三 > < 三 >

Assume that $\mathcal{I} \subset \mathcal{P}(I)$ is a σ -complete ideal, $C \in \mathcal{I}^+$, and $A \subset ADD(\mathcal{I}, C)$ is countable. Then $pcf(A) \subset ADD(\mathcal{I}, C)$.

Theorem If $A \subset ADD(\mathcal{N})$ is countable, then $pcf(A) \subset ADD(\mathcal{N})$.

• If $A \in [ADD(\mathcal{N})]^{\omega}$ then there is $C \in \mathcal{N}^+$ such that $A \subset ADD(\mathcal{N}, C)$.

What about \mathcal{M} ?

A D A D A D A

Assume that $\mathcal{I} \subset \mathcal{P}(I)$ is a σ -complete ideal, $C \in \mathcal{I}^+$, and $A \subset ADD(\mathcal{I}, C)$ is countable. Then $pcf(A) \subset ADD(\mathcal{I}, C)$.

Theorem

If $A \subset ADD(\mathcal{N})$ is countable, then $pcf(A) \subset ADD(\mathcal{N})$.

Theorem (Thümmel)

If $A \in [ADD(\mathcal{M})]^{\omega}$, then there is $C \in \mathcal{M}^+$ such that $A \subset ADD(\mathcal{M}, C)$.

Corollary If $A \subset ADD(\mathcal{M})$ is countable, then $pcf(A) \subset ADD(\mathcal{M})$.

Assume that $\mathcal{I} \subset \mathcal{P}(I)$ is a σ -complete ideal, $C \in \mathcal{I}^+$, and $A \subset ADD(\mathcal{I}, C)$ is countable. Then $pcf(A) \subset ADD(\mathcal{I}, C)$.

Theorem

If $A \subset ADD(\mathcal{N})$ is countable, then $pcf(A) \subset ADD(\mathcal{N})$.

Theorem (Thümmel)

If $A \in [ADD(\mathcal{M})]^{\omega}$, then there is $C \in \mathcal{M}^+$ such that $A \subset ADD(\mathcal{M}, C)$.

Corollary

If $A \subset ADD(\mathcal{M})$ is countable, then $pcf(A) \subset ADD(\mathcal{M})$.

If $\mathcal{I} = \mathcal{M}$ or $\mathcal{I} = \mathcal{N}$, and $A \subset ADD(\mathcal{I})$ is countable, then $pcf(A) \subset ADD(\mathcal{I})$

 \mathcal{B} is the σ -ideal generated by the compact subsets of the irrationals.

Theorem If $A \subset ADD(B)$ is progressive and $|A| < \mathfrak{h}$, then $pcf(A) \subset ADD(B)$.

If $\mathcal{I} = \mathcal{M}$ or $\mathcal{I} = \mathcal{N}$, and $A \subset ADD(\mathcal{I})$ is countable, then $pcf(A) \subset ADD(\mathcal{I})$

 \mathcal{B} is the σ -ideal generated by the compact subsets of the irrationals.

Theorem If $A \subset ADD(B)$ is progressive and $|A| < \mathfrak{h}$, then $pcf(A) \subset ADD(B)$.

・ 同 ト ・ ヨ ト ・ ヨ

If $\mathcal{I} = \mathcal{M}$ or $\mathcal{I} = \mathcal{N}$, and $A \subset ADD(\mathcal{I})$ is countable, then $pcf(A) \subset ADD(\mathcal{I})$

 \mathcal{B} is the σ -ideal generated by the compact subsets of the irrationals.

Theorem If $A \subset ADD(B)$ is progressive and $|A| < \mathfrak{h}$, then $pcf(A) \subset ADD(B)$.

< 同 > < 三 > < 三 >

Theorem

Assume that \mathcal{I} is one of the ideals \mathcal{B}, \mathcal{M} and \mathcal{N} . If A = pcf(A) is a non-empty set of uncountable regular cardinals, $|A| < \min(A)^{+n}$ for some $n \in \omega$, then $A = ADD(\mathcal{I})$ in some c.c.c generic extension V^P .

The ideals \mathcal{B}, \mathcal{M} and \mathcal{N} have the **Hechler property**

 \mathcal{I} has the **Hechler property** iff given any σ -directed poset Q there is a c.c.c poset P such that $V^P \vdash \Omega$ is order-isomorphic to a cofinal subset of $\langle \mathcal{I}, \sigma \rangle$

Theorem

Assume that \mathcal{I} is one of the ideals \mathcal{B}, \mathcal{M} and \mathcal{N} . If A = pcf(A) is a non-empty set of uncountable regular cardinals, $|A| < \min(A)^{+n}$ for some $n \in \omega$, then $A = ADD(\mathcal{I})$ in some c.c.c generic extension V^P .

The ideals \mathcal{B}, \mathcal{M} and \mathcal{N} have the **Hechler property**

 \mathcal{I} has the **Hechler property** iff given any σ -directed poset Q there is a c.c.c poset P such that $V^P \models Q$ is order-isomorphic to a cofinal subset of $\langle \mathcal{I}, \subset \rangle$.

▲圖▶ ▲ 国▶ ▲ 国≯

Theorem

Assume that \mathcal{I} is one of the ideals \mathcal{B}, \mathcal{M} and \mathcal{N} . If A = pcf(A) is a non-empty set of uncountable regular cardinals, $|A| < \min(A)^{+n}$ for some $n \in \omega$, then $A = ADD(\mathcal{I})$ in some c.c.c generic extension V^P .

The ideals $\mathcal{B},\,\mathcal{M}$ and \mathcal{N} have the Hechler property

 \mathcal{I} has the **Hechler property** iff given any σ -directed poset Q there is a c.c.c poset P such that $V^P \models Q$ is order-isomorphic to a cofinal subset of $\langle \mathcal{I}, \subset \rangle$.

A (10) A (10)

Theorem

Assume that \mathcal{I} is one of the ideals \mathcal{B}, \mathcal{M} and \mathcal{N} . If A = pcf(A) is a non-empty set of uncountable regular cardinals, $|A| < \min(A)^{+n}$ for some $n \in \omega$, then $A = ADD(\mathcal{I})$ in some c.c.c generic extension V^P .

The ideals \mathcal{B}, \mathcal{M} and \mathcal{N} have the Hechler property

 \mathcal{I} has the **Hechler property** iff given any σ -directed poset Q there is a c.c.c poset P such that

 $V^{P} \models Q$ is order-isomorphic to a cofinal subset of $\langle \mathcal{I}, \subset \rangle$.

< 回 > < 回 > < 回 >

Hechler property

 \mathcal{I} has the **Hechler property** iff given any σ -directed poset Q there is a c.c.c poset P such that $V^P \models$ a cofinal subset $\{I_q : q \in Q\}$ of $\langle \mathcal{I}, \subset \rangle$ is **isomorphic to** Q.

- Hechler: B has the Hechler property,
 Hechler: (ω^ω, <*) has the Hechler proper
- Bartoszynski and Kada: *M* has the Hechler property,
- Burke and Kada: \mathcal{N} has the Hechler property.

A (10) A (10) A (10)

Hechler property

 \mathcal{I} has the **Hechler property** iff given any σ -directed poset Q there is a c.c.c poset P such that $V^P \models a \text{ cofinal subset } \{I_q : q \in Q\} \text{ of } \langle \mathcal{I}, \subset \rangle \text{ is isomorphic to } Q.$

- Hechler: B has the Hechler property,
 - Hechler: $\langle \omega^{\omega}, \leq^* \rangle$ has the Hechler property,
- Bartoszynski and Kada: M has the Hechler property,
- Burke and Kada: N has the Hechler property.

4 **A A A A A A A**

Hechler property

 \mathcal{I} has the **Hechler property** iff given any σ -directed poset Q there is a c.c.c poset P such that $V^{P} \models a \text{ cofinal subset } \{I_{q} : q \in Q\} \text{ of } \langle \mathcal{I}, \subset \rangle \text{ is isomorphic to } Q.$

- Hechler: B has the Hechler property,
 - Hechler: $\langle \omega^{\omega}, \leq^* \rangle$ has the Hechler property,
- Bartoszynski and Kada: M has the Hechler property,
- Burke and Kada: \mathcal{N} has the Hechler property.

Hechler property

 \mathcal{I} has the **Hechler property** iff given any σ -directed poset Q there is a c.c.c poset P such that $V^{P} \models$ a cofinal subset { $I_{q} : q \in Q$ } of $\langle \mathcal{I}, \subset \rangle$ is **isomorphic to** Q.

- Hechler: *B* has the Hechler property,
 - Hechler: $\langle \omega^{\omega}, \leq^* \rangle$ has the Hechler property,
- Bartoszynski and Kada: M has the Hechler property,
- Burke and Kada: N has the Hechler property.

Hechler property

 \mathcal{I} has the **Hechler property** iff given any σ -directed poset Q there is a c.c.c poset P such that $V^P \models$ a cofinal subset $\{I_q : q \in Q\}$ of $\langle \mathcal{I}, \subset \rangle$ is **isomorphic to** Q.

- Hechler: B has the Hechler property,
 - Hechler: $\langle \omega^{\omega}, \leq^* \rangle$ has the Hechler property,
- Bartoszynski and Kada: M has the Hechler property,
- Burke and Kada: N has the Hechler property.

- $A = pcf(A), |A| < min(A)^{+n}$
- $\mathbf{Q} = \langle \prod \mathbf{A}, \leq \rangle.$
- \mathcal{I} has the Hechler property: $f: \langle \mathbf{Q}, \leq \rangle \hookrightarrow \langle \mathcal{I}, \subset \rangle$
- $A \subset ADD(\mathcal{I})$ is easy
- Need: $\lambda \notin A$ then $\lambda \notin ADD(\mathcal{I})$
- Key observation:

If B = pcf(B) is a **progressive set of regular cardinals**, $\lambda \notin B$, then for each $\{f_i : i < \lambda\} \subset \prod B$ there is $g \in \prod B$ such that $|\{i : f_i \leq g\}| = \lambda$.

< 同 > < 三 > < 三 >

- $A = pcf(A), |A| < min(A)^{+n}$
- $\mathbf{Q} = \langle \prod \mathbf{A}, \leq \rangle.$
- \mathcal{I} has the Hechler property: $f: \langle \mathbf{Q}, \leq \rangle \hookrightarrow \langle \mathcal{I}, \subset \rangle$
- $A \subset ADD(\mathcal{I})$ is easy
- Need: $\lambda \notin A$ then $\lambda \notin ADD(\mathcal{I})$
- Key observation:

If B = pcf(B) is a **progressive set of regular cardinals**, $\lambda \notin B$, then for each $\{f_i : i < \lambda\} \subset \prod B$ there is $g \in \prod B$ such that $|\{i : f_i \leq g\}| = \lambda$.

A (10) A (10)

- $A = pcf(A), |A| < min(A)^{+n}$
- $\mathbf{Q} = \langle \prod \mathbf{A}, \leq \rangle.$
- \mathcal{I} has the Hechler property: $f: \langle \mathbf{Q}, \leq \rangle \hookrightarrow \langle \mathcal{I}, \subset \rangle$
- $A \subset ADD(\mathcal{I})$ is easy
- Need: $\lambda \notin A$ then $\lambda \notin ADD(\mathcal{I})$
- Key observation:

If B = pcf(B) is a **progressive set of regular cardinals**, $\lambda \notin B$, then for each $\{f_i : i < \lambda\} \subset \prod B$ there is $g \in \prod B$ such that $|\{i : f_i \leq g\}| = \lambda$.

A (10) A (10)

- A = pcf(A), $|A| < min(A)^{+n}$
- $\mathbf{Q} = \langle \prod \mathbf{A}, \leq \rangle.$
- \mathcal{I} has the Hechler property: $f : \langle \mathsf{Q}, \leq \rangle \hookrightarrow \langle \mathcal{I}, \subset \rangle$
- $A \subset ADD(\mathcal{I})$ is easy
- Need: $\lambda \notin A$ then $\lambda \notin ADD(\mathcal{I})$
- Key observation:

If B = pcf(B) is a **progressive set of regular cardinals**, $\lambda \notin B$, then for each $\{f_i : i < \lambda\} \subset \prod B$ there is $g \in \prod B$ such that $|\{i : f_i \leq g\}| = \lambda$.

- 4 週 ト 4 ヨ ト 4 ヨ ト -

- A = pcf(A), $|A| < min(A)^{+n}$
- $\mathbf{Q} = \langle \prod \mathbf{A}, \leq \rangle.$
- \mathcal{I} has the Hechler property: $f: \langle \mathbf{Q}, \leq \rangle \hookrightarrow \langle \mathcal{I}, \subset \rangle$
- $A \subset ADD(\mathcal{I})$ is easy
- Need: $\lambda \notin A$ then $\lambda \notin ADD(\mathcal{I})$
- Key observation:

If B = pcf(B) is a **progressive set of regular cardinals**, $\lambda \notin B$, then for each $\{f_i : i < \lambda\} \subset \prod B$ there is $g \in \prod B$ such that $|\{i : f_i \leq g\}| = \lambda$.

- A = pcf(A), $|A| < min(A)^{+n}$
- $\mathbf{Q} = \langle \prod \mathbf{A}, \leq \rangle.$
- \mathcal{I} has the Hechler property: $f: \langle \mathbf{Q}, \leq \rangle \hookrightarrow \langle \mathcal{I}, \subset \rangle$
- $A \subset ADD(\mathcal{I})$ is easy
- Need: $\lambda \notin A$ then $\lambda \notin ADD(\mathcal{I})$
- Key observation:
 If B = pcf(B) is a progressive set of regular cardinals, λ ∉ B, then for each {f_i : i < λ} ⊂ ∏ B there is g ∈ ∏ B such that |{i : f_i ≤ g}| = λ.

- A = pcf(A), $|A| < min(A)^{+n}$
- $\mathbf{Q} = \langle \prod \mathbf{A}, \leq \rangle.$
- \mathcal{I} has the Hechler property: $f: \langle \mathbf{Q}, \leq \rangle \hookrightarrow \langle \mathcal{I}, \subset \rangle$
- $A \subset ADD(\mathcal{I})$ is easy
- Need: $\lambda \notin A$ then $\lambda \notin ADD(\mathcal{I})$
- Key observation:
 If B = pcf(B) is a progressive set of regular cardinals, λ ∉ B, then for each {f_i : i < λ} ⊂ ∏ B there is g ∈ ∏ B such that |{i : f_i ≤ g}| = λ.

くほう くほう くほう

The ideals $\mathcal{B},\,\mathcal{M} \text{ and } \mathcal{N}$

Theorem

Assume that $\mathcal{I} = \mathcal{B}$ or $\mathcal{I} = \mathcal{M}$ or $\mathcal{I} = \mathcal{N}$. Given a nonempty, countable subset A of uncountable regular cardinals, T.F.A.E

• A = ADD(I) in some c.c.c generic extension

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The ideals \mathcal{B}, \mathcal{M} and \mathcal{N}

Theorem

Assume that $\mathcal{I} = \mathcal{B}$ or $\mathcal{I} = \mathcal{M}$ or $\mathcal{I} = \mathcal{N}$. Given a nonempty, countable subset A of uncountable regular cardinals, T.F.A.E

A = pcf(A)
A = ADD(I) in some c.c.c generic extension.

The ideals \mathcal{B}, \mathcal{M} and \mathcal{N}

Theorem

Assume that $\mathcal{I} = \mathcal{B}$ or $\mathcal{I} = \mathcal{M}$ or $\mathcal{I} = \mathcal{N}$. Given a nonempty, countable subset A of uncountable regular cardinals, T.F.A.E

• A = pcf(A)

• $A = ADD(\mathcal{I})$ in some c.c.c generic extension.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

The ideals \mathcal{B}, \mathcal{M} and \mathcal{N}

Theorem

Assume that $\mathcal{I} = \mathcal{B}$ or $\mathcal{I} = \mathcal{M}$ or $\mathcal{I} = \mathcal{N}$. Given a nonempty, countable subset A of uncountable regular cardinals, T.F.A.E

- A = pcf(A)
- $A = ADD(\mathcal{I})$ in some c.c.c generic extension.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Farah: GCH \implies chain - spectrum(\mathfrak{b}) is arbitrary (mod \aleph_1) $K = ADD(\mathcal{B})$ iff K = pcf(K)

- Can we prove (some form of) a strong Hechler theorem? If Q is a *a*-directed poset then there is a c.c.c poset P s. t. $V^P \models$ a cofinal subset of $\langle \omega^{\omega}, \leq^* \rangle$ is order isomorphic to Q
- Conjecture: If K is a non-empty set of uncountable regular cardinals, then in some c.c.c extension we have chain spectrum(b) = K and add(B) = pcf(K).

Farah: GCH \implies chain - spectrum(b) is arbitrary (mod \aleph_1) K = ADD(B) iff K = pcf(K)

- Can we prove (some form of) a strong Hechler theorem? If Q is a σ -directed poset then there is a c.c.c poset P s. t. $V^P \models$ a cofinal subset of $\langle \omega^{\omega}, \leq^* \rangle$ is order isomorphic to Q AND chain-spectrum (b) chain-spectrum (c)
- Conjecture: If K is a non-empty set of uncountable regular cardinals, then in some c.c.c extension we have chain spectrum(b) = K and add(B) = pcf(K).

不得 トイモト イモト

Farah: GCH \implies chain - spectrum(b) is arbitrary (mod \aleph_1) K = ADD(B) iff K = pcf(K)

 Can we prove (some form of) a strong Hechler theorem? If Q is a σ-directed poset then there is a c.c.c poset P s. t. V^P ⊨ a cofinal subset of ⟨ω^ω, ≤*⟩ is order isomorphic to Q AND chain-spectrum(b) = chain-spectrum(Q)

Conjecture: If K is a non-empty set of uncountable regular cardinals, then in some c.c.c extension we have chain – spectrum(b) = K and add(B) = pcf(K).

< 回 > < 回 > < 回 >

Farah: GCH \implies chain - spectrum(b) is arbitrary (mod \aleph_1) K = ADD(B) iff K = pcf(K)

- Can we prove (some form of) a strong Hechler theorem? If Q is a σ-directed poset then there is a c.c.c poset P s. t. V^P ⊨ a cofinal subset of ⟨ω^ω, ≤*⟩ is order isomorphic to Q AND chain-spectrum(b) = chain-spectrum(Q)
- Conjecture: If K is a non-empty set of uncountable regular cardinals, then in some c.c.c extension we have chain spectrum(b) = K and add(B) = pcf(K).

A (10) A (10)

Farah: GCH \implies chain - spectrum(b) is arbitrary (mod \aleph_1) K = ADD(B) iff K = pcf(K)

- Can we prove (some form of) a strong Hechler theorem?
 If Q is a σ-directed poset then there is a c.c.c poset P s. t.
 V^P ⊨ a cofinal subset of ⟨ω^ω, ≤*⟩ is order isomorphic to Q
 AND chain-spectrum(b) = chain-spectrum(Q)
- Conjecture: If K is a non-empty set of uncountable regular cardinals, then in some c.c.c extension we have chain spectrum(b) = K and add(B) = pcf(K).

< 回 > < 回 > < 回 >

- spectrum(\mathfrak{a})= {| \mathcal{A} | : $\mathcal{A} \subset [\omega]^{\omega}$ is MAD}
- Characterize spectrum(a)!
- { $\aleph_n : 1 \le n < \omega$ } \subset spectrum(a) $\stackrel{?}{\Longrightarrow} \aleph_{\omega+1} \in$ spectrum(a).

A (10) A (10) A (10)

• spectrum(\mathfrak{a})= {| \mathcal{A} | : $\mathcal{A} \subset [\omega]^{\omega}$ is MAD}

Characterize spectrum(a)!

• $\{\aleph_n : 1 \le n < \omega\} \subset \operatorname{spectrum}(\mathfrak{a}) \stackrel{?}{\Longrightarrow} \aleph_{\omega+1} \in \operatorname{spectrum}(\mathfrak{a}).$

A (10) A (10) A (10)

- spectrum(\mathfrak{a})= {| \mathcal{A} | : $\mathcal{A} \subset [\omega]^{\omega}$ is MAD}
- Characterize spectrum(a)!
- { $\aleph_n : 1 \le n < \omega$ } \subset spectrum(a) $\stackrel{?}{\Longrightarrow} \aleph_{\omega+1} \in$ spectrum(a).

< 同 ト < 三 ト < 三

- spectrum(\mathfrak{a})= {| \mathcal{A} | : $\mathcal{A} \subset [\omega]^{\omega}$ is MAD}
- Characterize spectrum(a)!
- $\{\aleph_n : 1 \le n < \omega\} \subset \operatorname{spectrum}(\mathfrak{a}) \xrightarrow{?} \aleph_{\omega+1} \in \operatorname{spectrum}(\mathfrak{a}).$

< 同 > < 回 > .

• Soukup, L: Pcf theory and cardinal invariants of the reals, arXiv:1006.1808v1, to appear in CMUC.

< 同 ト < 三 ト < 三