Pcf theory and cardinal invariants of the reals

Lajos Soukup

Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
Winter School in Abstract Analysis section Set Theory

The beginning

- Is every set definable?
- Is every set definable in some generic extension?
- Hamkin's question: Is every set X definable in some cardinal preserving extension of the ground model?
- What about $X \subset \omega$?
- Cardinal exponentiation can not help: it may collapse cardinals
- Use the spectrum of some cardinal invariant to code!

The beginning

- Is every set definable?
- Is every set definable in some generic extension?
- Hamkin's question: Is every set X definable in some cardinal preserving extension of the ground model?
- What about $X \subset \omega$?
- Cardinal exponentiation can not help: it may collapse cardinals
- Use the spectrum of some cardinal invariant to code!

The beginning

- Is every set definable?
- Is every set definable in some generic extension?
- Hamkin's question: Is every set X definable in some cardinal preserving extension of the ground model?
- What about $X \subset \omega$?
- Cardinal exponentiation can not help: it may collapse cardinals
- Use the spectrum of some cardinal invariant to code!

The beginning

- Is every set definable?
- Is every set definable in some generic extension?
- Hamkin's question: Is every set X definable in some cardinal preserving extension of the ground model?
- What about $X \subset \omega$?
- Cardinal exponentiation can not help: it may collapse cardinals
- Use the spectrum of some cardinal invariant to code!

The beginning

- Is every set definable?
- Is every set definable in some generic extension?
- Hamkin's question: Is every set X definable in some cardinal preserving extension of the ground model?
- What about $X \subset \omega$?
- Cardinal exponentiation can not help: it may collapse cardinals
- Use the spectrum of some cardinal invariant to code!

The beginning

- Is every set definable?
- Is every set definable in some generic extension?
- Hamkin's question: Is every set X definable in some cardinal preserving extension of the ground model?
- What about $X \subset \omega$?
- Cardinal exponentiation can not help: it may collapse cardinals
- Use the spectrum of some cardinal invariant to code!

The beginning

- Is every set definable?
- Is every set definable in some generic extension?
- Hamkin's question: Is every set X definable in some cardinal preserving extension of the ground model?
- What about $X \subset \omega$?
- Cardinal exponentiation can not help: it may collapse cardinals
- Use the spectrum of some cardinal invariant to code!

Coding by MADness

- $\mathfrak{a}=\min \left\{|\mathcal{A}|: \mathcal{A} \subset[\omega]^{\omega}\right.$ is MAD$\}$
- $\operatorname{spectrum}(\mathfrak{a})=\left\{|\mathcal{A}|: \mathcal{A} \subset\lceil\omega\rceil^{\omega}\right.$ is $\left.\mathbb{N} A D\right\}$

Coding by MADness

- $\mathfrak{a}=\min \left\{|\mathcal{A}|: \mathcal{A} \subset[\omega]^{\omega}\right.$ is MAD $\}$
- $\operatorname{spectrum}(a)=\left\{|\mathcal{A}|: \mathcal{A} \subset[\omega]^{\omega}\right.$ is MAD $\}$

Coding by MADness

- $\mathfrak{a}=\min \left\{|\mathcal{A}|: \mathcal{A} \subset[\omega]^{\omega}\right.$ is MAD $\}$
- $\operatorname{spectrum}(\mathfrak{a})=\left\{|\mathcal{A}|: \mathcal{A} \subset[\omega]^{\omega}\right.$ is MAD $\}$

Coding by MADness

- $\mathfrak{a}=\min \left\{|\mathcal{A}|: \mathcal{A} \subset[\omega]^{\omega}\right.$ is MAD $\}$
- $\operatorname{spectrum}(\mathfrak{a})=\left\{|\mathcal{A}|: \mathcal{A} \subset[\omega]^{\omega}\right.$ is MAD $\}$
- Let $X \subset \omega$.

If CH holds then there is a c.c.c poset P such that

$$
V^{P} \models " n \in X \text { iff } \aleph_{n+1} \in \operatorname{spectrum}(\mathfrak{a}) " .
$$

Coding by MADness

- $\mathfrak{a}=\min \left\{|\mathcal{A}|: \mathcal{A} \subset[\omega]^{\omega}\right.$ is MAD $\}$
- $\operatorname{spectrum}(\mathfrak{a})=\left\{|\mathcal{A}|: \mathcal{A} \subset[\omega]^{\omega}\right.$ is MAD $\}$
- Let $X \subset \omega$.

If CH holds then there is a c.c.c poset P such that

$$
V^{P} \models " n \in X \text { iff } \aleph_{n+1} \in \operatorname{spectrum}(\mathfrak{a}) "
$$

Coding by MADness

If CH holds then for each $X \subset \omega$ there is a c.c.c poset P such that

$$
V^{P} \models " n \in X \text { iff } \aleph_{n+1} \in \operatorname{spectrum}(\mathfrak{a}) " .
$$

- Question: Let $X \subset \omega+\omega$. Is there a c.c.c poset P such that $V^{P} \models " n \in X$ iff $\aleph_{n+1} \in \operatorname{spectrum}(\mathfrak{a})$,
- No problem with $\left\{\aleph_{1}, \aleph_{2}, \ldots\right\}$ and $\left\{\aleph_{\omega+2}, \aleph_{\omega+3}, \ldots\right\}$
- find a c.c.c poset P s.t. $V^{P} \models\left\{\aleph_{n}: 1 \leq n<\omega\right\} \subset \operatorname{spectrum}(\mathfrak{a}) \wedge \aleph_{\omega+1} \notin \operatorname{spectrum}(\mathfrak{a})$

Coding by MADness

If CH holds then for each $X \subset \omega$ there is a c.c.c poset P such that

$$
V^{P} \models " n \in X \text { iff } \aleph_{n+1} \in \operatorname{spectrum}(\mathfrak{a}) " .
$$

- Question: Let $X \subset \omega+\omega$. Is there a c.c.c poset P such that $V^{P} \models " n \in X$ iff $\aleph_{n+1} \in \operatorname{spectrum}(\mathfrak{a})$,

Coding by MADness

If CH holds then for each $X \subset \omega$ there is a c.c.c poset P such that

$$
V^{P} \models " n \in X \text { iff } \aleph_{n+1} \in \operatorname{spectrum}(\mathfrak{a}) " .
$$

- Question: Let $X \subset \omega+\omega$. Is there a c.c.c poset P such that $V^{P} \models " n \in X$ iff $\aleph_{n+1} \in \operatorname{spectrum}(\mathfrak{a})$,
- No problem with $\left\{\aleph_{1}, \aleph_{2}, \ldots\right\}$ and $\left\{\aleph_{\omega+2}, \aleph_{\omega+3}, \ldots\right\}$

Coding by MADness

If CH holds then for each $X \subset \omega$ there is a c.c.c poset P such that

$$
V^{P} \models " n \in X \text { iff } \aleph_{n+1} \in \operatorname{spectrum}(\mathfrak{a}) " .
$$

- Question: Let $X \subset \omega+\omega$. Is there a c.c.c poset P such that $V^{P} \models " n \in X$ iff $\aleph_{n+1} \in \operatorname{spectrum}(\mathfrak{a})$,
- No problem with $\left\{\aleph_{1}, \aleph_{2}, \ldots\right\}$ and $\left\{\aleph_{\omega+2}, \aleph_{\omega+3}, \ldots\right\}$
- find a c.c.c poset P s.t.
$V^{P} \models\left\{\aleph_{n}: 1 \leq n<\omega\right\} \subset \operatorname{spectrum}(\mathfrak{a}) \wedge \aleph_{\omega+1} \notin \operatorname{spectrum}(\mathfrak{a})$

Spectrum of a cardinal invariant

Characterize spectrum (x) for different cardinal invariants!

- r cardinal invariant (e.g. a, b)
- $\mathfrak{r}=\min \left\{|X|: X \in \mathfrak{X}_{r}\right\}$ or $\mathfrak{x}=\sup \left\{|X|: X \in \mathfrak{X}_{r}\right\}$
- $\operatorname{spectrum}(\mathfrak{x})=\left\{|X|: X \in \mathfrak{X}_{\mathfrak{x}}\right\}$

Spectrum of a cardinal invariant

Characterize spectrum (\mathfrak{x}) for different cardinal invariants!

- \mathfrak{r} cardinal invariant (e.g. a, b)
- $\mathfrak{x}=\min \left\{|X|: X \in \mathfrak{X}_{\mathfrak{r}}\right\}$ or $\mathfrak{x}=\sup \left\{|X|: X \in \mathfrak{X}_{\mathfrak{x}}\right\}$
- $\operatorname{spectrum}(\mathfrak{x})=\left\{|X|: X \in \mathfrak{X}_{\mathfrak{r}}\right\}$

Spectrum of a cardinal invariant

Characterize spectrum (x) for different cardinal invariants!

- \mathfrak{x} cardinal invariant (e.g. $\mathfrak{a}, \mathfrak{b}$)
- $\mathfrak{r}=\min \left\{|X|: X \in \mathfrak{X}_{r}\right\}$ or $\mathfrak{r}=\sup \left\{|X|: X \in \mathfrak{X}_{r}\right\}$

Spectrum of a cardinal invariant

Characterize spectrum (x) for different cardinal invariants!

- \mathfrak{x} cardinal invariant (e.g. $\mathfrak{a}, \mathfrak{b}$)
- $\mathfrak{x}=\min \left\{|X|: X \in \mathfrak{X}_{\mathfrak{x}}\right\}$ or $\mathfrak{x}=\sup \left\{|X|: X \in \mathfrak{X}_{\mathfrak{x}}\right\}$

Spectrum of a cardinal invariant

Characterize spectrum (x) for different cardinal invariants!

- \mathfrak{x} cardinal invariant (e.g. $\mathfrak{a}, \mathfrak{b}$)
- $\mathfrak{x}=\min \left\{|X|: X \in \mathfrak{X}_{\mathfrak{x}}\right\}$ or $\mathfrak{x}=\sup \left\{|X|: X \in \mathfrak{X}_{\mathfrak{x}}\right\}$
- $\operatorname{spectrum}(\mathfrak{x})=\left\{|X|: X \in \mathfrak{X}_{\mathfrak{x}}\right\}$

Cofinality spectrum of groups

- $S(\omega)$ the group of all permutations of the natural numbers
- Define the cofinality spectrum of $S(\omega)$ as follows:
- $\lambda \in \operatorname{CF}(S(\omega))$ iff $S(\omega)$ is the union of an increasing chain of λ proper subgroups.
- Shelah and Thomas: (1) if $\left\{k_{n}: n<\omega\right\} \in[C F(S(\omega))]^{\omega}$ increasing then $\operatorname{pcf}\left(\left\{\kappa_{n}: n<\omega\right\}\right) \subset \mathrm{CF}(S(\omega))$
- Problem: Full characterization of $C F(S(\omega))$

Cofinality spectrum of groups

- $S(\omega)$ the group of all permutations of the natural numbers
- Define the cofinality spectrum of $S(\omega)$ as follows:
- $\lambda \in \operatorname{CF}(S(\omega))$ iff $S(\omega)$ is the union of an increasing chain of λ proper subgroups.
- Shelah and Thomas: (1) if $\left\{\kappa_{n}: n<\omega\right\} \in[\operatorname{CF}(S(\omega))]^{\omega}$ increasing then $\operatorname{pcf}\left(\left\{\kappa_{n}: n<\omega\right\}\right) \subset \operatorname{CF}(S(\omega))$
- Problem: Full characterization of $C F(S(\omega))$

Cofinality spectrum of groups

- $S(\omega)$ the group of all permutations of the natural numbers
- Define the cofinality spectrum of $S(\omega)$ as follows:
- $\lambda \in \operatorname{CF}(S(\omega))$ iff $S(\omega)$ is the union of an increasing chain of λ proper subgroups.
- Shelah and Thomas: (1) if $\left\{k_{n}: n<\omega\right\} \in[C F(S(\omega))]^{\omega}$ increasing then $\operatorname{pcf}\left(\left\{\kappa_{n}: n<\omega\right\}\right) \subset \operatorname{CF}(S(\omega))$
- Problem: Full characterization of $C F(S(\omega))$

Cofinality spectrum of groups

- $S(\omega)$ the group of all permutations of the natural numbers
- Define the cofinality spectrum of $S(\omega)$ as follows:
- $\lambda \in \mathrm{CF}(S(\omega))$ iff $S(\omega)$ is the union of an increasing chain of λ proper subgroups.
- Shelah and Thomas: (1) if $\left\{\kappa_{n}: n<\omega\right\} \in[C F(S(\omega))]^{\omega}$ increasing then $\operatorname{pcf}\left(\left\{\kappa_{n}: n<\omega\right\}\right) \subset \operatorname{CF}(S(\omega))$
- Problem: Full characterization of $C F(S(\omega))$

Cofinality spectrum of groups

- $S(\omega)$ the group of all permutations of the natural numbers
- Define the cofinality spectrum of $S(\omega)$ as follows:
- $\lambda \in \operatorname{CF}(S(\omega))$ iff $S(\omega)$ is the union of an increasing chain of λ proper subgroups.
- Shelah and Thomas: (1) if $\left\{\kappa_{n}: n<\omega\right\} \in[\operatorname{CF}(S(\omega))]^{\omega}$ increasing then $\operatorname{pcf}\left(\left\{\kappa_{n}: n<\omega\right\}\right) \subset \mathrm{CF}(S(\omega))$
(2) IF GCH holds and $K \subset$ Reg s.t (i), (ii) and (iii) hold, THEN $C F(S(\omega))=K$ in some c.c.c generic extension
- Problem: Full characterization of $C F(S(\omega))$

Cofinality spectrum of groups

- $S(\omega)$ the group of all permutations of the natural numbers
- Define the cofinality spectrum of $S(\omega)$ as follows:
- $\lambda \in \operatorname{CF}(S(\omega))$ iff $S(\omega)$ is the union of an increasing chain of λ proper subgroups.
- Shelah and Thomas: (1) if $\left\{\kappa_{n}: n<\omega\right\} \in[\operatorname{CF}(S(\omega))]^{\omega}$ increasing then $\operatorname{pcf}\left(\left\{\kappa_{n}: n<\omega\right\}\right) \subset \mathrm{CF}(S(\omega))$
(2) IF GCH holds and $K \subset$ Reg s.t (i), (ii) and (iii) hold,
- Problem: Full characterization of $\operatorname{CF}(S(\omega))$

Cofinality spectrum of groups

- $S(\omega)$ the group of all permutations of the natural numbers
- Define the cofinality spectrum of $S(\omega)$ as follows:
- $\lambda \in \operatorname{CF}(S(\omega))$ iff $S(\omega)$ is the union of an increasing chain of λ proper subgroups.
- Shelah and Thomas: (1) if $\left\{\kappa_{n}: n<\omega\right\} \in[\operatorname{CF}(S(\omega))]^{\omega}$ increasing then $\operatorname{pcf}\left(\left\{\kappa_{n}: n<\omega\right\}\right) \subset \mathrm{CF}(S(\omega))$
(2) IF GCH holds and $K \subset$ Reg s.t (i), (ii) and (iii) hold, THEN $C F(S(\omega))=K$ in some c.c.c generic extension

Cofinality spectrum of groups

- $S(\omega)$ the group of all permutations of the natural numbers
- Define the cofinality spectrum of $S(\omega)$ as follows:
- $\lambda \in \operatorname{CF}(S(\omega))$ iff $S(\omega)$ is the union of an increasing chain of λ proper subgroups.
- Shelah and Thomas: (1) if $\left\{\kappa_{n}: n<\omega\right\} \in[\operatorname{CF}(S(\omega))]^{\omega}$ increasing then $\operatorname{pcf}\left(\left\{\kappa_{n}: n<\omega\right\}\right) \subset \mathrm{CF}(S(\omega))$
(2) IF GCH holds and $K \subset$ Reg s.t (i), (ii) and (iii) hold, THEN $C F(S(\omega))=K$ in some c.c.c generic extension
- Problem: Full characterization of $\operatorname{CF}(S(\omega))$

The spectrum of \mathfrak{b}

Shelah-Thomas: $\operatorname{CF}(S(\omega))$ is pcf-closed.

- What about the spectrum of \mathfrak{b} ?
- What is the spectrum of \mathfrak{b} ?
- \mathfrak{b} is the minimal size of an unbounded chain in $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$
- chain - $\operatorname{spectrum(b)=}$

The spectrum of \mathfrak{b}

Shelah-Thomas: $\operatorname{CF}(S(\omega))$ is pcf-closed.

- What about the spectrum of \mathfrak{b} ?
- What is the spectrum of \mathfrak{b} ?
- \mathfrak{b} is the minimal size of an unbounded chain in $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$
- chain $-\operatorname{spectrum}(\mathfrak{b})=$

The spectrum of \mathfrak{b}

Shelah-Thomas: $\operatorname{CF}(S(\omega))$ is pcf-closed.

- What about the spectrum of \mathfrak{b} ?
- What is the spectrum of \mathfrak{b} ?
- \mathfrak{b} is the minimal size of an unbounded chain in $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$
- chain - $\operatorname{spectrum(b)=}$

The spectrum of \mathfrak{b}

Shelah-Thomas: $\operatorname{CF}(S(\omega))$ is pcf-closed.

- What about the spectrum of \mathfrak{b} ?
- What is the spectrum of \mathfrak{b} ?
- \mathfrak{b} is the minimal size of an unbounded chain in $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$
- chain $-\operatorname{spectrum(b)=}$

The spectrum of \mathfrak{b}

Shelah-Thomas: $\operatorname{CF}(S(\omega))$ is pcf-closed.

- What about the spectrum of \mathfrak{b} ?
- What is the spectrum of \mathfrak{b} ?
- \mathfrak{b} is the minimal size of an unbounded chain in $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$
- chain $-\operatorname{spectrum}(\mathfrak{b})=$
$\left\{\kappa \in \mathfrak{R e g}: \exists\right.$ unbounded κ-chain in $\left.\left\langle\omega^{\omega}, \leq^{*}\right\rangle\right\}$

The spectrum of \mathfrak{b}

chain - $\operatorname{spectrum}(\mathfrak{b})=$ $\left\{\kappa \in \mathfrak{R e g}: \exists\right.$ unbounded κ-chain in $\left.\left\langle\omega^{\omega}, \leq^{*}\right\rangle\right\}$

Theorem (Farah)

Assume GCH. Given any set K of uncountable regular cardinals there is a c.c.c poset \mathcal{H}_{K} s. t.
 $V^{\mathcal{H}_{K}}=$ chain $-\operatorname{spectrum}(\mathfrak{b})=K \cup\left\{\aleph_{1}\right\}$

The spectrum of \mathfrak{b}

chain $-\operatorname{spectrum}(\mathfrak{b})=$
$\left\{\kappa \in \mathfrak{R e g}: \exists\right.$ unbounded κ-chain in $\left.\left\langle\omega^{\omega}, \leq^{*}\right\rangle\right\}$

Theorem (Farah)

Assume GCH. Given any set K of uncountable regular cardinals there is a c.c.c poset \mathcal{H}_{k} s. t.
$V^{\mathcal{H}_{K}} \models$ chain $-\operatorname{spectrum}(\mathfrak{b})=K \cup\left\{\aleph_{1}\right\}$.

Additivity spectrum of ideals

chain - spectrum(b) can be "arbitrary"

- $\mathcal{B}=\left\{B \subset \omega^{\omega}: B\right.$ is \leq^{*}-bounded in $\left.\left\langle\omega^{\omega}, \leq^{*}\right\rangle\right\}$
- $\Phi(b)=\left\{x \in \omega^{\omega}: x \leq^{*} b\right\}$
- Φ embeds $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$ into $\langle\mathcal{B}, \subset\rangle$
- \mathcal{B} the σ-ideal generated by the compact subsets of the irrationals.
- $\mathfrak{b}=\operatorname{add}(\mathcal{B})$
- If \mathcal{I} is an ideal, let $A D D(I)$ be the additivity spectrum of I :
- $\operatorname{ADD}(\mathcal{B}) \supseteq$ chain - spectrum (\mathfrak{b}).

Additivity spectrum of ideals

chain - spectrum(\mathfrak{b}) can be "arbitrary"

- $\mathcal{B}=\left\{B \subset \omega^{\omega}: B\right.$ is \leq^{*}-bounded in $\left.\left\langle\omega^{\omega}, \leq^{*}\right\rangle\right\}$
- $\Phi(b)=\left\{x \in \omega^{\omega}: x \leq^{*} b\right\}$
- Φ embeds $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$ into $\langle\mathcal{B}, \subset\rangle$
- \mathcal{B} the σ-ideal generated by the compact subsets of the irrationals.
- $\mathfrak{b}=\operatorname{add}(\mathcal{B})$
- If \mathcal{I} is an ideal, let $\operatorname{ADD}(\mathcal{I})$ be the additivity spectrum of \mathcal{I} :
- $\operatorname{ADD}(\mathcal{B}) \supseteq$ chain - spectrum (\mathfrak{b}).

Additivity spectrum of ideals

chain - spectrum(\mathfrak{b}) can be "arbitrary"

- $\mathcal{B}=\left\{B \subset \omega^{\omega}: B\right.$ is \leq^{*}-bounded in $\left.\left\langle\omega^{\omega}, \leq^{*}\right\rangle\right\}$
- $\Phi(b)=\left\{x \in \omega^{\omega}: x \leq^{*} b\right\}$
- Φ embeds $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$ into $\langle\mathcal{B}, \subset\rangle$
- \mathcal{B} the σ-ideal generated by the compact subsets of the irrationals.
- $\mathfrak{b}=\operatorname{add}(\mathcal{B})$
- If \mathcal{I} is an ideal, let $\operatorname{ADD}(\mathcal{I})$ be the additivity spectrum of \mathcal{I} :
- $\operatorname{ADD}(\mathcal{B}) \supseteq$ chain $-\operatorname{spectrum}(\mathfrak{b})$.

Additivity spectrum of ideals

chain - spectrum(\mathfrak{b}) can be "arbitrary"

- $\mathcal{B}=\left\{B \subset \omega^{\omega}: B\right.$ is \leq^{*}-bounded in $\left.\left\langle\omega^{\omega}, \leq^{*}\right\rangle\right\}$
- $\Phi(b)=\left\{x \in \omega^{\omega}: x \leq^{*} b\right\}$
- Φ embeds $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$ into $\langle\mathcal{B}, \subset\rangle$
- \mathcal{B} the σ-ideal generated by the compact subsets of the irrationals.
- $\mathfrak{b}=\operatorname{add}(\mathcal{B})$
- If \mathcal{I} is an ideal, let $\operatorname{ADD}(\mathcal{I})$ be the additivity spectrum of \mathcal{I} :
- $\operatorname{ADD}(\mathcal{B}) \supseteq$ chain $-\operatorname{spectrum}(\mathfrak{b})$.

Additivity spectrum of ideals

chain - spectrum(\mathfrak{b}) can be "arbitrary"

- $\mathcal{B}=\left\{B \subset \omega^{\omega}: B\right.$ is \leq^{*}-bounded in $\left.\left\langle\omega^{\omega}, \leq^{*}\right\rangle\right\}$
- $\Phi(b)=\left\{x \in \omega^{\omega}: x \leq^{*} b\right\}$
- Φ embeds $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$ into $\langle\mathcal{B}, \subset\rangle$
- \mathcal{B} the σ-ideal generated by the compact subsets of the irrationals.
- $\mathfrak{b}=\operatorname{add}(\mathcal{B})$
- If \mathcal{I} is an ideal, let $\operatorname{ADD}(\mathcal{I})$ be the additivity spectrum of \mathcal{I} :
- $\operatorname{ADD}(\mathcal{B}) \supseteq$ chain - spectrum (\mathfrak{b}).

Additivity spectrum of ideals

chain - spectrum(\mathfrak{b}) can be "arbitrary"

- $\mathcal{B}=\left\{B \subset \omega^{\omega}: B\right.$ is \leq^{*}-bounded in $\left.\left\langle\omega^{\omega}, \leq^{*}\right\rangle\right\}$
- $\Phi(b)=\left\{x \in \omega^{\omega}: x \leq^{*} b\right\}$
- Φ embeds $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$ into $\langle\mathcal{B}, \subset\rangle$
- \mathcal{B} the σ-ideal generated by the compact subsets of the irrationals.
- $\mathfrak{b}=\operatorname{add}(\mathcal{B})$
- If \mathcal{I} is an ideal, let $\operatorname{ADD}(\mathcal{I})$ be the additivity spectrum of \mathcal{I} :
- $\operatorname{ADD}(\mathcal{B}) \supseteq$ chain - spectrum (\mathfrak{b}).

Additivity spectrum of ideals

chain - spectrum(\mathfrak{b}) can be "arbitrary"

- $\mathcal{B}=\left\{B \subset \omega^{\omega}: B\right.$ is \leq^{*}-bounded in $\left.\left\langle\omega^{\omega}, \leq^{*}\right\rangle\right\}$
- $\Phi(b)=\left\{x \in \omega^{\omega}: x \leq^{*} b\right\}$
- Φ embeds $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$ into $\langle\mathcal{B}, \subset\rangle$
- \mathcal{B} the σ-ideal generated by the compact subsets of the irrationals.
- $\mathfrak{b}=\operatorname{add}(\mathcal{B})$
- If \mathcal{I} is an ideal, let $\operatorname{ADD}(\mathcal{I})$ be the additivity spectrum of \mathcal{I} :
there is an increasing chain $\left\{C_{\alpha}: \alpha<\kappa\right\} \subset \mathcal{I}$ with $\cup_{\alpha<\kappa} C_{\alpha} \notin \mathcal{I}$.
- $\operatorname{ADD}(\mathcal{B}) \supseteq$ chain - spectrum (\mathfrak{b}).

Additivity spectrum of ideals

chain - spectrum(\mathfrak{b}) can be "arbitrary"

- $\mathcal{B}=\left\{B \subset \omega^{\omega}: B\right.$ is \leq^{*}-bounded in $\left.\left\langle\omega^{\omega}, \leq^{*}\right\rangle\right\}$
- $\Phi(b)=\left\{x \in \omega^{\omega}: x \leq^{*} b\right\}$
- Φ embeds $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$ into $\langle\mathcal{B}, \subset\rangle$
- \mathcal{B} the σ-ideal generated by the compact subsets of the irrationals.
- $\mathfrak{b}=\operatorname{add}(\mathcal{B})$
- If \mathcal{I} is an ideal, let $\operatorname{ADD}(\mathcal{I})$ be the additivity spectrum of \mathcal{I} :
$\kappa \in \operatorname{ADD}(\mathcal{I})$ iff
there is an increasing chain $\left\{\boldsymbol{C}_{\alpha}: \alpha<\kappa\right\} \subset \mathcal{I}$ with $\cup_{\alpha<\kappa} C_{\alpha} \notin \mathcal{I}$.

Additivity spectrum of ideals

chain - spectrum(\mathfrak{b}) can be "arbitrary"

- $\mathcal{B}=\left\{B \subset \omega^{\omega}: B\right.$ is \leq^{*}-bounded in $\left.\left\langle\omega^{\omega}, \leq^{*}\right\rangle\right\}$
- $\Phi(b)=\left\{x \in \omega^{\omega}: x \leq^{*} b\right\}$
- Φ embeds $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$ into $\langle\mathcal{B}, \subset\rangle$
- \mathcal{B} the σ-ideal generated by the compact subsets of the irrationals.
- $\mathfrak{b}=\operatorname{add}(\mathcal{B})$
- If \mathcal{I} is an ideal, let $\operatorname{ADD}(\mathcal{I})$ be the additivity spectrum of \mathcal{I} :
$\kappa \in \operatorname{ADD}(\mathcal{I})$ iff
there is an increasing chain $\left\{C_{\alpha}: \alpha<\kappa\right\} \subset \mathcal{I}$ with $\cup_{\alpha<\kappa} C_{\alpha} \notin \mathcal{I}$.
- $\operatorname{ADD}(\mathcal{B}) \supseteq$ chain - spectrum (\mathfrak{b}).

Additivity spectrum of ideals

```
\(\operatorname{ADD}(\mathcal{I})=\left\{\kappa \in \mathfrak{R e g}: \exists\left\{\boldsymbol{C}_{\alpha}: \alpha<\kappa\right\} \nearrow \mathcal{I}\right.\) with \(\cup_{\alpha<\kappa} C_{\alpha} \notin \mathcal{I}\).
```

- For $C \in \mathcal{I}^{+}$, let
$\operatorname{ADD}(\mathcal{I}, C)=\{\kappa \in \mathfrak{R e g}$
\exists increasing $\left\{C_{\alpha}: \alpha<\kappa\right\} \subset I$ s.t.

- $\operatorname{ADD}(\mathcal{I})=\cup\left\{\operatorname{ADD}(\mathcal{I}, C): C \in \mathcal{I}^{+}\right\}$.

Theorem
Ascume that $I \subset \mathcal{P}(I)$ is a σ-complete ideal, $C \in I^{+}$, and $A \subset \mathrm{ADD}(I, C)$ is countable. Then $\operatorname{pcf}(A) \subset \mathrm{ADD}(\mathcal{I}, C)$.

Additivity spectrum of ideals

```
\(\operatorname{ADD}(\mathcal{I})=\left\{\kappa \in \mathfrak{R e g}: \exists\left\{\boldsymbol{C}_{\alpha}: \alpha<\kappa\right\} \nearrow \mathcal{I}\right.\) with \(\cup_{\alpha<\kappa} C_{\alpha} \notin \mathcal{I}\).
```

- For $C \in \mathcal{I}^{+}$, let
$\operatorname{ADD}(\mathcal{I}, C)=\{\kappa \in \mathfrak{R e g}$: \exists increasing $\left\{C_{\alpha}: \alpha<\kappa\right\} \subset \mathcal{I}$ s.t. $\left.\cup_{\alpha<\kappa} C_{\alpha}=C\right\}$

Theorem

Ascume that $I \subset P(I)$ is a σ-complete ideal, $C \in I^{+}$, and $A \subset A D D(I, C)$ is countable. Then pcf $(A) \subset A D D(I, C)$.

Additivity spectrum of ideals

```
ADD(\mathcal{I})={\kappa\in\mathfrak{Reg}:\exists{\mp@subsup{C}{\alpha}{}:\alpha<\kappa} \nearrow\mathcal{I}}\mathrm{ with }\mp@subsup{\cup}{\alpha<\kappa}{}\mp@subsup{C}{\alpha}{}\not\in\mathcal{I}
```

- For $C \in \mathcal{I}^{+}$, let
$\operatorname{ADD}(\mathcal{I}, C)=\{\kappa \in \mathfrak{R e g}$: \exists increasing $\left\{C_{\alpha}: \alpha<\kappa\right\} \subset \mathcal{I}$ s.t. $\left.\cup_{\alpha<\kappa} C_{\alpha}=C\right\}$
- $\operatorname{ADD}(\mathcal{I})=\cup\left\{\operatorname{ADD}(\mathcal{I}, C): C \in \mathcal{I}^{+}\right\}$.

Theorem

Ascume that $\mathcal{I} \subset P(I)$ is a σ-complete ideal, $C \in I^{+}$, and $A \subset A D D(I, C)$ is countable. Then pcf $(A) \subset A D D(I, C)$.

Additivity spectrum of ideals

$\operatorname{ADD}(\mathcal{I})=\left\{\kappa \in \mathfrak{R e g}: \exists\left\{\boldsymbol{C}_{\alpha}: \alpha<\kappa\right\} \nearrow \mathcal{I}\right.$ with $\cup_{\alpha<\kappa} C_{\alpha} \notin \mathcal{I}$.

- For $C \in \mathcal{I}^{+}$, let
$\operatorname{ADD}(\mathcal{I}, C)=\{\kappa \in \mathfrak{R e g}$: \exists increasing $\left\{C_{\alpha}: \alpha<\kappa\right\} \subset \mathcal{I}$ s.t. $\left.\cup_{\alpha<\kappa} C_{\alpha}=C\right\}$
- $\operatorname{ADD}(\mathcal{I})=\cup\left\{\operatorname{ADD}(\mathcal{I}, C): C \in \mathcal{I}^{+}\right\}$.

Theorem

Assume that $\mathcal{I} \subset \mathcal{P}(I)$ is a σ-complete ideal, $C \in \mathcal{I}^{+}$, and $A \subset \operatorname{ADD}(\mathcal{I}, C)$ is countable. Then $\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{I}, C)$.
$\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{I}, C)$ for a countable $A \subset \operatorname{ADD}(\mathcal{I}, C)$

- For $a \in A$ let $\left\{C_{\alpha}^{a}: \alpha<a\right\} \subset \mathcal{I}$, increasing, $\bigcup\left\{C_{\alpha}^{a}: \alpha<a\right\}=C$.
- Let $\kappa \in \operatorname{pcf}(A)$. Fix an ultrafilter \mathcal{U} on A such that $\operatorname{cf}\left(\prod A / \mathcal{U}\right)=\kappa$
- Let $\left\{g_{\alpha}: \alpha<\kappa\right\} \subset \prod A$ be $\leq_{\mathcal{U}}$-increasing, $\leq_{\mathcal{U}}$-cofinal sequence.
- For $g \in \prod A$ let $U(g)=\left\{x \in I:\left\{a \in A: x \in C_{g(a)}^{a}\right\} \in \mathcal{U}\right\}$.
- $\left\langle U\left(g_{\alpha}\right): \alpha<\kappa\right\rangle$ witnesses that $\kappa \in \operatorname{ADD}(\mathcal{I}, C)$
$\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{I})$ for a (countable) $A \subset \operatorname{ADD}(\mathcal{I})$?
$\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{I}, C)$ for a countable $A \subset \operatorname{ADD}(\mathcal{I}, C)$
- For $a \in A$ let $\left\{C_{\alpha}^{a}: \alpha<a\right\} \subset \mathcal{I}$, increasing, $\bigcup\left\{C_{\alpha}^{a}: \alpha<a\right\}=C$. - Let $\kappa \in \operatorname{pcf}(A)$. Fix an ultrafilter \mathcal{U} on A such that $\operatorname{cf}\left(\prod A / \mathcal{U}\right)=\kappa$ - Let $\left\{g_{\alpha}: \alpha<\kappa\right\} \subset \prod A$ be $\leq_{\mathcal{U}}$-increasing, $\leq_{\mathcal{U}}$-cofinal sequence. - For $g \in \prod A$ let $U(g)=\left\{x \in I:\left\{a \in A: x \in C_{g(a)}^{a}\right\} \in \mathcal{U}\right\}$ - $\left\langle U\left(g_{\alpha}\right): \alpha<\kappa\right\rangle$ witnesses that $\kappa \in \operatorname{ADD}(\mathcal{I}, C)$ $p c f(A) \subset \operatorname{ADD}(\mathcal{I})$ for a (countable) $A \subset \operatorname{ADD}(\mathcal{I})$?
$\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{I}, C)$ for a countable $A \subset \operatorname{ADD}(\mathcal{I}, C)$
- For $a \in A$ let $\left\{C_{\alpha}^{a}: \alpha<a\right\} \subset \mathcal{I}$, increasing, $\bigcup\left\{C_{\alpha}^{a}: \alpha<a\right\}=C$.
- Let $\kappa \in \operatorname{pcf}(A)$. Fix an ultrafilter \mathcal{U} on A such that $\operatorname{cf}\left(\prod A / \mathcal{U}\right)=\kappa$
- Let $\left\{g_{\alpha}: \alpha<\kappa\right\} \subset \prod A$ be $\leq \leq_{\mathcal{U}}$-increasing, $\leq_{\mathcal{U}}$-cofinal sequence. - For $g \in \prod A$ let $U(g)=\left\{x \in I:\left\{a \in A: x \in C_{g(a)}^{a}\right\} \in \mathcal{U}\right\}$
- $\left\langle U\left(g_{\alpha}\right): \alpha<\kappa\right\rangle$ witnesses that $\kappa \in \operatorname{ADD}(\mathcal{I}, C)$
$\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{I})$ for a (countable) $A \subset \operatorname{ADD}(\mathcal{I})$?
$\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{I}, C)$ for a countable $A \subset \operatorname{ADD}(\mathcal{I}, C)$
- For $a \in A$ let $\left\{C_{\alpha}^{a}: \alpha<a\right\} \subset \mathcal{I}$, increasing, $\bigcup\left\{C_{\alpha}^{a}: \alpha<a\right\}=C$.
- Let $\kappa \in \operatorname{pcf}(A)$. Fix an ultrafilter \mathcal{U} on A such that $\operatorname{cf}\left(\prod A / \mathcal{U}\right)=\kappa$
- Let $\left\{g_{\alpha}: \alpha<\kappa\right\} \subset \prod A$ be $\leq_{\mathcal{U}}$-increasing, $\leq_{\mathcal{U}}$-cofinal sequence.

- $\left\langle U\left(g_{\alpha}\right): \alpha<\kappa\right\rangle$ witnesses that $\kappa \in \operatorname{ADD}(\mathcal{I}, C)$ $\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{I})$ for a (countable) $A \subset \operatorname{ADD}(\mathcal{I})$?

$\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{I}, C)$ for a countable $A \subset \operatorname{ADD}(\mathcal{I}, C)$

- For $a \in A$ let $\left\{C_{\alpha}^{a}: \alpha<a\right\} \subset \mathcal{I}$, increasing, $\bigcup\left\{C_{\alpha}^{a}: \alpha<a\right\}=C$.
- Let $\kappa \in \operatorname{pcf}(A)$. Fix an ultrafilter \mathcal{U} on A such that $\operatorname{cf}\left(\prod A / \mathcal{U}\right)=\kappa$
- Let $\left\{g_{\alpha}: \alpha<\kappa\right\} \subset \prod A$ be $\leq \leq_{\mathcal{U}}$-increasing, $\leq_{\mathcal{U}}$-cofinal sequence.
- For $g \in \prod A$ let $U(g)=\left\{x \in I:\left\{a \in A: x \in C_{g(a)}^{a}\right\} \in \mathcal{U}\right\}$.

$\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{I}, C)$ for a countable $A \subset \operatorname{ADD}(\mathcal{I}, C)$

- For $a \in A$ let $\left\{C_{\alpha}^{a}: \alpha<a\right\} \subset \mathcal{I}$, increasing, $\bigcup\left\{C_{\alpha}^{a}: \alpha<a\right\}=C$.
- Let $\kappa \in \operatorname{pcf}(A)$. Fix an ultrafilter \mathcal{U} on A such that $\operatorname{cf}\left(\prod A / \mathcal{U}\right)=\kappa$
- Let $\left\{g_{\alpha}: \alpha<\kappa\right\} \subset \prod A$ be $\leq_{\mathcal{U}}$-increasing, $\leq_{\mathcal{U}}$-cofinal sequence.
- For $g \in \prod A$ let $U(g)=\left\{x \in I:\left\{a \in A: x \in C_{g(a)}^{a}\right\} \in \mathcal{U}\right\}$.
- $\left\langle U\left(g_{\alpha}\right): \alpha<\kappa\right\rangle$ witnesses that $\kappa \in \operatorname{ADD}(\mathcal{I}, C)$

$\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{I}, C)$ for a countable $A \subset \operatorname{ADD}(\mathcal{I}, C)$

- For $a \in A$ let $\left\{C_{\alpha}^{a}: \alpha<a\right\} \subset \mathcal{I}$, increasing, $\bigcup\left\{C_{\alpha}^{a}: \alpha<a\right\}=C$.
- Let $\kappa \in \operatorname{pcf}(A)$. Fix an ultrafilter \mathcal{U} on A such that $\operatorname{cf}\left(\prod A / \mathcal{U}\right)=\kappa$
- Let $\left\{g_{\alpha}: \alpha<\kappa\right\} \subset \prod A$ be $\leq \mathcal{U}$-increasing, $\leq_{\mathcal{U}}$-cofinal sequence.
- For $g \in \prod A$ let $U(g)=\left\{x \in I:\left\{a \in A: x \in C_{g(a)}^{a}\right\} \in \mathcal{U}\right\}$.
- $\left\langle U\left(g_{\alpha}\right): \alpha<\kappa\right\rangle$ witnesses that $\kappa \in \operatorname{ADD}(\mathcal{I}, C)$
$p c f(A) \subset \operatorname{ADD}(\mathcal{I})$ for a (countable) $A \subset \operatorname{ADD}(\mathcal{I})$?

The ideals \mathcal{B}, \mathcal{M} and \mathcal{N} : restrictions

Assume that $\mathcal{I} \subset \mathcal{P}(I)$ is a σ-complete ideal, $C \in \mathcal{I}^{+}$, and $A \subset \operatorname{ADD}(\mathcal{I}, C)$ is countable. Then $\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{I}, C)$.

The ideals \mathcal{B}, \mathcal{M} and \mathcal{N} : restrictions

Assume that $\mathcal{I} \subset \mathcal{P}(I)$ is a σ-complete ideal, $C \in \mathcal{I}^{+}$, and $A \subset \operatorname{ADD}(\mathcal{I}, C)$ is countable. Then $\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{I}, C)$.

Theorem
If $A \subset \operatorname{ADD}(\mathcal{N})$ is countable, then $\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{N})$.

The ideals \mathcal{B}, \mathcal{M} and \mathcal{N} : restrictions

Assume that $\mathcal{I} \subset \mathcal{P}(I)$ is a σ-complete ideal, $C \in \mathcal{I}^{+}$, and $A \subset \operatorname{ADD}(\mathcal{I}, C)$ is countable. Then $\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{I}, C)$.

Theorem
If $A \subset \operatorname{ADD}(\mathcal{N})$ is countable, then $\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{N})$.

- If $A \in[\operatorname{ADD}(\mathcal{N})]^{\omega}$ then there is $C \in \mathcal{N}^{+}$such that $A \subset \operatorname{ADD}(\mathcal{N}, C)$.

The ideals \mathcal{B}, \mathcal{M} and \mathcal{N} : restrictions

Assume that $\mathcal{I} \subset \mathcal{P}(I)$ is a σ-complete ideal, $C \in \mathcal{I}^{+}$, and $A \subset \operatorname{ADD}(\mathcal{I}, C)$ is countable. Then $\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{I}, C)$.

Theorem
If $A \subset \operatorname{ADD}(\mathcal{N})$ is countable, then $\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{N})$.

- If $A \in[\operatorname{ADD}(\mathcal{N})]^{\omega}$ then there is $C \in \mathcal{N}^{+}$such that $A \subset \operatorname{ADD}(\mathcal{N}, C)$.

What about \mathcal{M} ?

The ideals \mathcal{B}, \mathcal{M} and \mathcal{N} : restrictions

Assume that $\mathcal{I} \subset \mathcal{P}(I)$ is a σ-complete ideal, $C \in \mathcal{I}^{+}$, and $A \subset \operatorname{ADD}(\mathcal{I}, C)$ is countable. Then $\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{I}, C)$.

Theorem
If $A \subset \operatorname{ADD}(\mathcal{N})$ is countable, then $\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{N})$.
Theorem (Thümmel)
If $A \in[\operatorname{ADD}(\mathcal{M})]^{\omega}$, then there is $C \in \mathcal{M}^{+}$such that $A \subset \operatorname{ADD}(\mathcal{M}, C)$.

The ideals \mathcal{B}, \mathcal{M} and \mathcal{N} : restrictions

Assume that $\mathcal{I} \subset \mathcal{P}(I)$ is a σ-complete ideal, $C \in \mathcal{I}^{+}$, and $A \subset \operatorname{ADD}(\mathcal{I}, C)$ is countable. Then $\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{I}, C)$.

Theorem
If $A \subset \operatorname{ADD}(\mathcal{N})$ is countable, then $\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{N})$.
Theorem (Thümmel)
If $A \in[\operatorname{ADD}(\mathcal{M})]^{\omega}$, then there is $C \in \mathcal{M}^{+}$such that $A \subset \operatorname{ADD}(\mathcal{M}, C)$.

Corollary
If $A \subset \operatorname{ADD}(\mathcal{M})$ is countable, then $\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{M})$.

The ideals \mathcal{B}, \mathcal{M} and \mathcal{N} : restrictions

If $\mathcal{I}=\mathcal{M}$ or $\mathcal{I}=\mathcal{N}$, and $A \subset \operatorname{ADD}(\mathcal{I})$ is countable, then $\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{I})$

\mathcal{B} is the σ-ideal generated by the compact subsets of the irrationals.

The ideals \mathcal{B}, \mathcal{M} and \mathcal{N} : restrictions

If $\mathcal{I}=\mathcal{M}$ or $\mathcal{I}=\mathcal{N}$, and $A \subset \operatorname{ADD}(\mathcal{I})$ is countable, then $\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{I})$
\mathcal{B} is the σ-ideal generated by the compact subsets of the irrationals.

The ideals \mathcal{B}, \mathcal{M} and \mathcal{N} : restrictions

If $\mathcal{I}=\mathcal{M}$ or $\mathcal{I}=\mathcal{N}$, and $A \subset \operatorname{ADD}(\mathcal{I})$ is countable, then $\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{I})$
\mathcal{B} is the σ-ideal generated by the compact subsets of the irrationals.

Theorem
If $A \subset \operatorname{ADD}(\mathcal{B})$ is progressive and $|A|<\mathfrak{h}$, then $\operatorname{pcf}(A) \subset \operatorname{ADD}(\mathcal{B})$.

The ideals \mathcal{B}, \mathcal{M} and \mathcal{N} : construction

```
Theorem
Assume that I is one of the ideals B,M and N. If A = pcf(A) is a
non-empty set of uncountable regular cardinals, }|A|<\operatorname{min}(A\mp@subsup{)}{}{+n}\mathrm{ for
some n}\in\omega\mathrm{ , then A=ADD(I) in some c.c.c generic extension VP.
The ideals B, M and N
I has the Hechler property iff given any }\sigma\mathrm{ -directed poset Q there is a
c.c.c poset P such that
V }\mp@subsup{V}{}{P}=Q\mathrm{ is order-isomorphic to a cofinal subset of }\langle\mathcal{I},\subset\rangle\mathrm{ .
```


The ideals \mathcal{B}, \mathcal{M} and \mathcal{N} : construction

Theorem
Assume that \mathcal{I} is one of the ideals \mathcal{B}, \mathcal{M} and \mathcal{N}. If $A=\operatorname{pcf}(A)$ is a non-empty set of uncountable regular cardinals, $|A|<\min (A)^{+n}$ for some $n \in \omega$, then $A=\operatorname{ADD}(\mathcal{I})$ in some c.c.c generic extension V^{P}.

The ideals \mathcal{B}, \mathcal{M} and \mathcal{N} : construction

Theorem
Assume that \mathcal{I} is one of the ideals \mathcal{B}, \mathcal{M} and \mathcal{N}. If $A=\operatorname{pcf}(A)$ is a non-empty set of uncountable regular cardinals, $|A|<\min (A)^{+n}$ for some $n \in \omega$, then $A=\operatorname{ADD}(\mathcal{I})$ in some c.c.c generic extension V^{P}.

The ideals \mathcal{B}, \mathcal{M} and \mathcal{N} have the Hechler property

The ideals \mathcal{B}, \mathcal{M} and \mathcal{N} : construction

```
Theorem
Assume that \mathcal{I is one of the ideals }\mathcal{B},\mathcal{M}\mathrm{ and }\mathcal{N}\mathrm{ . If }A=\operatorname{pcf}(A)\mathrm{ is a}
non-empty set of uncountable regular cardinals, }|A|<\operatorname{min}(A\mp@subsup{)}{}{+n}\mathrm{ for some \(n \in \omega\), then \(A=\operatorname{ADD}(\mathcal{I})\) in some c.c.c generic extension \(V^{P}\).
The ideals \(\mathcal{B}, \mathcal{M}\) and \(\mathcal{N}\) have the Hechler property
\(\mathcal{I}\) has the Hechler property iff given any \(\sigma\)-directed poset \(Q\) there is a c.c.c poset \(P\) such that
\(V^{P} \models Q\) is order-isomorphic to a cofinal subset of \(\langle\mathcal{I}, \subset\rangle\).
```


Hechler property

\mathcal{I} has the Hechler property iff given any σ-directed poset Q there is a c.c.c poset P such that
$V^{P} \models$ a cofinal subset $\left\{I_{q}: q \in Q\right\}$ of $\langle\mathcal{I}, \subset\rangle$ is isomorphic to Q.

- Hechler: \mathcal{B} has the Hechler property,
- Bartoszynski and Kada: \mathcal{M} has the Hechler property,
- Burke and Kada: \mathcal{N} has the Hechler property.

Hechler property

\mathcal{I} has the Hechler property iff given any σ-directed poset Q there is a c.c.c poset P such that
$V^{P} \models$ a cofinal subset $\left\{I_{q}: q \in Q\right\}$ of $\langle\mathcal{I}, \subset\rangle$ is isomorphic to Q.

- Hechler: \mathcal{B} has the Hechler property,
- Hechler: $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$ has the Hechler property,
- Bartoszynski and Kada: \mathcal{M} has the Hechler property,
- Burke and Kada: \mathcal{N} has the Hechler property.

Hechler property

\mathcal{I} has the Hechler property iff given any σ-directed poset Q there is a c.c.c poset P such that
$V^{P} \models$ a cofinal subset $\left\{I_{q}: q \in Q\right\}$ of $\langle\mathcal{I}, \subset\rangle$ is isomorphic to Q.

- Hechler: \mathcal{B} has the Hechler property,
- Hechler: $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$ has the Hechler property,
- Bartoszynski and Kada: M has the Hechler property,
- Burke and Kada: \mathcal{N} has the Hechler property.

Hechler property

\mathcal{I} has the Hechler property iff given any σ-directed poset Q there is a c.c.c poset P such that
$V^{P} \models$ a cofinal subset $\left\{I_{q}: q \in Q\right\}$ of $\langle\mathcal{I}, \subset\rangle$ is isomorphic to Q.

- Hechler: \mathcal{B} has the Hechler property,
- Hechler: $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$ has the Hechler property,
- Bartoszynski and Kada: \mathcal{M} has the Hechler property,
- Burke and Kada: \mathcal{N} has the Hechler property.

Hechler property

\mathcal{I} has the Hechler property iff given any σ-directed poset Q there is a c.c.c poset P such that
$V^{P} \models$ a cofinal subset $\left\{I_{q}: q \in Q\right\}$ of $\langle\mathcal{I}, \subset\rangle$ is isomorphic to Q.

- Hechler: \mathcal{B} has the Hechler property,
- Hechler: $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$ has the Hechler property,
- Bartoszynski and Kada: \mathcal{M} has the Hechler property,
- Burke and Kada: \mathcal{N} has the Hechler property.

How to obtain a model of $A=\operatorname{ADD}(\mathcal{I})$?

- $A=\operatorname{pcf}(A),|A|<\min (A)^{+n}$
- $Q=\left\langle\prod A,<\right\rangle$.
- I has the Hechler property: $f:\langle Q, \leq\rangle \hookrightarrow\langle\mathcal{I}, \subset\rangle$
- $A \subset \operatorname{ADD}(\mathcal{I})$ is easy
- Need $: \lambda \notin A$ then $\lambda \notin \operatorname{ADD}(I)$
- Key observation:

If $B=\operatorname{pcf}(B)$ is a progressive set of regular cardinals, $\lambda \notin B$, then for each $\left\{f_{i}: i<\lambda\right\} \subset \prod B$ there is $g \in \prod B$ such that $\left|\left\{i: f_{i} \leq g\right\}\right|=\lambda$.

How to obtain a model of $A=\operatorname{ADD}(\mathcal{I})$?

- $A=\operatorname{pcf}(A),|A|<\min (A)^{+n}$
- $Q=\left\langle\prod A, \leq\right\rangle$.
- I has the Hechler property: $f:\langle Q, \leq\rangle \hookrightarrow\langle\mathcal{I}, \subset\rangle$
- $A \subset A D D(\mathcal{I})$ is easy
- Need: $\lambda \notin A$ then $\lambda \notin \operatorname{ADD}(I)$
- Key observation:

If $B=\operatorname{pcf}(B)$ is a progressive set of regular cardinals, $\lambda \notin B$, then for each $\left\{f_{i}: i<\lambda\right\} \subset \Pi B$ there is $g \in \Pi B$ such that $\left|\left\{i: f_{i} \leq g\right\}\right|=\lambda$.

How to obtain a model of $A=\operatorname{ADD}(\mathcal{I})$?

- $A=\operatorname{pcf}(A),|A|<\min (A)^{+n}$
- $Q=\left\langle\prod A, \leq\right\rangle$.
- I has the Hechler property: $f:\langle Q, \leq\rangle \hookrightarrow\langle\mathcal{I}, \subset\rangle$
- $A \subset A D D(\mathcal{I})$ is easy
- Need: $\lambda \notin A$ then $\lambda \notin \operatorname{ADD}(I)$
- Key observation:

If $B=\operatorname{pcf}(B)$ is a progressive set of regular cardinals, $\lambda \notin B$, then for each $\left\{f_{i}: i<\lambda\right\} \subset \prod B$ there is $g \in \prod B$ such that

How to obtain a model of $A=\operatorname{ADD}(\mathcal{I})$?

- $A=\operatorname{pcf}(A),|A|<\min (A)^{+n}$
- $Q=\langle\Pi A, \leq\rangle$.
- I has the Hechler property: $f:\langle Q, \leq\rangle \hookrightarrow\langle\mathcal{I}, \subset\rangle$
- $A \subset A D D(I)$ is easy
- Need: $\lambda \notin A$ then $\lambda \notin \operatorname{ADD}(\mathcal{I})$
- Key observation:

If $B=\operatorname{pcf}(B)$ is a progressive set of regular cardinals, $\lambda \notin B$, then for each $\left\{f_{i}: i<\lambda\right\} \subset \prod B$ there is $g \in \prod B$ such that

How to obtain a model of $A=\operatorname{ADD}(\mathcal{I})$?

- $A=\operatorname{pcf}(A),|A|<\min (A)^{+n}$
- $Q=\langle\Pi A, \leq\rangle$.
- \mathcal{I} has the Hechler property: $f:\langle Q, \leq\rangle \hookrightarrow\langle\mathcal{I}, \subset\rangle$
- $A \subset \operatorname{ADD}(\mathcal{I})$ is easy
- Need: $\lambda \notin A$ then $\lambda \notin \operatorname{ADD}(I)$
- Key observation:

If $B=\operatorname{pcf}(B)$ is a progressive set of regular cardinals, $\lambda \notin B$, then for each $\left\{f_{i}: i<\lambda\right\} \subset \Pi B$ there is $g \in \Pi B$ such that

How to obtain a model of $A=\operatorname{ADD}(\mathcal{I})$?

- $A=\operatorname{pcf}(A),|A|<\min (A)^{+n}$
- $Q=\left\langle\prod A, \leq\right\rangle$.
- \mathcal{I} has the Hechler property: $f:\langle Q, \leq\rangle \hookrightarrow\langle\mathcal{I}, \subset\rangle$
- $A \subset \operatorname{ADD}(\mathcal{I})$ is easy
- Need $: \lambda \notin A$ then $\lambda \notin \operatorname{ADD}(\mathcal{I})$
- Key observation:

If $B=\operatorname{pcf}(B)$ is a progressive set of regular cardinals, $\lambda \notin B$, then for each $\left\{f_{i}: i<\lambda\right\} \subset \prod B$ there is $g \in \Pi B$ such that

How to obtain a model of $A=\operatorname{ADD}(\mathcal{I})$?

- $A=\operatorname{pcf}(A),|A|<\min (A)^{+n}$
- $Q=\langle\Pi A, \leq\rangle$.
- \mathcal{I} has the Hechler property: $f:\langle Q, \leq\rangle \hookrightarrow\langle\mathcal{I}, \subset\rangle$
- $A \subset \operatorname{ADD}(\mathcal{I})$ is easy
- Need $: \lambda \notin A$ then $\lambda \notin \operatorname{ADD}(\mathcal{I})$
- Key observation:

If $B=\operatorname{pcf}(B)$ is a progressive set of regular cardinals, $\lambda \notin B$, then for each $\left\{f_{i}: i<\lambda\right\} \subset \prod B$ there is $g \in \prod B$ such that $\left|\left\{i: f_{i} \leq g\right\}\right|=\lambda$.

The ideals \mathcal{B}, \mathcal{M} and \mathcal{N}

```
Theorem
Assume that I = B or I = M or I = N. . Given a nonempty, countable
subset A of uncountable regular cardinals, T.F.A.E
```


The ideals \mathcal{B}, \mathcal{M} and \mathcal{N}

Theorem

Assume that $\mathcal{I}=\mathcal{B}$ or $\mathcal{I}=\mathcal{M}$ or $\mathcal{I}=\mathcal{N}$. Given a nonempty, countable subset A of uncountable regular cardinals, T.F.A.E

- $A=\operatorname{ADD}(\mathcal{I})$ in some c.c.c generic extension.

The ideals \mathcal{B}, \mathcal{M} and \mathcal{N}

Theorem

Assume that $\mathcal{I}=\mathcal{B}$ or $\mathcal{I}=\mathcal{M}$ or $\mathcal{I}=\mathcal{N}$. Given a nonempty, countable subset A of uncountable regular cardinals, T.F.A.E

- $A=\operatorname{pcf}(A)$
- $A=\operatorname{ADD}(\mathcal{I})$ in some c.c.c generic extension.

The ideals \mathcal{B}, \mathcal{M} and \mathcal{N}

Theorem

Assume that $\mathcal{I}=\mathcal{B}$ or $\mathcal{I}=\mathcal{M}$ or $\mathcal{I}=\mathcal{N}$. Given a nonempty, countable subset A of uncountable regular cardinals, T.F.A.E

- $A=\operatorname{pcf}(A)$
- $A=\operatorname{ADD}(\mathcal{I})$ in some c.c.c generic extension.

Questions

Farah: GCH \Longrightarrow chain $-\operatorname{spectrum}(\mathfrak{b})$ is arbitrary $\left(\bmod \aleph_{1}\right)$
$K=\operatorname{ADD}(\mathcal{B})$ iff $K=\operatorname{pcf}(K)$

- Can we prove (some form of) a strong Hechler theorem?
- Conjecture: If K is a non-empty set of uncountable regular cardinals, then in some c.c.c extension we have chain $-\operatorname{spectrum}(\mathfrak{b})=K$ and $\operatorname{add}(\mathcal{B})=\operatorname{pcf}(K)$.

Questions

Farah: GCH \Longrightarrow chain $-\operatorname{spectrum}(\mathfrak{b})$ is arbitrary $\left(\bmod \aleph_{1}\right)$
$K=\operatorname{ADD}(\mathcal{B})$ iff $K=\operatorname{pcf}(K)$

- Can we prove (some form of) a strong Hechler theorem? If Q is a σ-directed poset then there is a c.c.c poset P s. t.
$V^{P} \models$ a cofinal subset of $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$ is order isomorphic to Q
- Conjecture: If K is a non-empty set of uncountable regular cardinals, then in some c.c.c extension we have chain $-\operatorname{spectrum}(\mathfrak{b})=K$ and $\operatorname{add}(\mathcal{B})=\operatorname{pcf}(K)$.

Questions

Farah: GCH \Longrightarrow chain $-\operatorname{spectrum}(\mathfrak{b})$ is arbitrary $\left(\bmod \aleph_{1}\right)$
$K=\operatorname{ADD}(\mathcal{B})$ iff $K=\operatorname{pcf}(K)$

- Can we prove (some form of) a strong Hechler theorem? If Q is a σ-directed poset then there is a c.c.c poset $P \mathrm{~s} . \mathrm{t}$. $V^{P} \models$ a cofinal subset of $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$ is order isomorphic to Q
- Conjecture: If K is a non-empty set of uncountable regular cardinals, then in some c.c.c extension we have chain $-\operatorname{spectrum}(\mathfrak{b})=K$ and $\operatorname{add}(\mathcal{B})=\operatorname{pcf}(K)$.

Questions

Farah: GCH \Longrightarrow chain $-\operatorname{spectrum}(\mathfrak{b})$ is arbitrary $\left(\bmod \aleph_{1}\right)$
$K=\operatorname{ADD}(\mathcal{B})$ iff $K=\operatorname{pcf}(K)$

- Can we prove (some form of) a strong Hechler theorem? If Q is a σ-directed poset then there is a c.c.c poset $P \mathrm{~s} . \mathrm{t}$. $V^{P} \models$ a cofinal subset of $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$ is order isomorphic to Q AND chain-spectrum $(\mathfrak{b})=$ chain-spectrum (Q)
- Conjecture: If K is a non-empty set of uncountable regular cardinals, then in some c.c.c extension we have chain $-\operatorname{spectrum}(\mathfrak{b})=K$ and $\operatorname{add}(\mathcal{B})=\operatorname{pcf}(K)$.

Questions

Farah: GCH \Longrightarrow chain $-\operatorname{spectrum}(\mathfrak{b})$ is arbitrary $\left(\bmod \aleph_{1}\right)$
$K=\operatorname{ADD}(\mathcal{B})$ iff $K=\operatorname{pcf}(K)$

- Can we prove (some form of) a strong Hechler theorem? If Q is a σ-directed poset then there is a c.c.c poset $P \mathrm{~s}$. t. $V^{P} \models$ a cofinal subset of $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$ is order isomorphic to Q AND chain-spectrum $(\mathfrak{b})=$ chain-spectrum (Q)
- Conjecture: If K is a non-empty set of uncountable regular cardinals, then in some c.c.c extension we have chain $-\operatorname{spectrum}(\mathfrak{b})=K$ and $\operatorname{add}(\mathcal{B})=\operatorname{pcf}(K)$.

Questions

- $\operatorname{spectrum}(\mathfrak{a})=\left\{|\mathcal{A}|: \mathcal{A} \subset[\omega]^{\omega}\right.$ is MAD $\}$
- Characterize spectrum(a)!
- $\left\{\aleph_{n}: 1 \leq n<\omega\right\} \subset \operatorname{spectrum}(a) \xrightarrow{?} \aleph_{\omega+1} \in \operatorname{spectrum}(a)$.

Questions

- $\operatorname{spectrum}(\mathfrak{a})=\left\{|\mathcal{A}|: \mathcal{A} \subset[\omega]^{\omega}\right.$ is MAD $\}$
- Characterize spectrum(a)!
- $\left\{\aleph_{n}: 1 \leq n<\omega\right\} \subset \operatorname{spectrum}(\mathfrak{a}) \stackrel{?}{\Longrightarrow} \aleph_{\omega+1} \in \operatorname{spectrum}(\mathfrak{a})$.

Questions

- $\operatorname{spectrum}(\mathfrak{a})=\left\{|\mathcal{A}|: \mathcal{A} \subset[\omega]^{\omega}\right.$ is MAD $\}$
- Characterize spectrum(a)!

Questions

- $\operatorname{spectrum}(\mathfrak{a})=\left\{|\mathcal{A}|: \mathcal{A} \subset[\omega]^{\omega}\right.$ is MAD $\}$
- Characterize spectrum(a)!
- $\left\{\aleph_{n}: 1 \leq n<\omega\right\} \subset \operatorname{spectrum}(\mathfrak{a}) \stackrel{?}{\Longrightarrow} \aleph_{\omega+1} \in \operatorname{spectrum}(\mathfrak{a})$.
- Soukup, L: Pcf theory and cardinal invariants of the reals, arXiv:1006.1808v1, to appear in CMUC.

